## A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations.(English. Russian summary)Zbl 0070.08201

### Keywords:

ordinary differential equations
Full Text:

### References:

 [1] R. Bellman, The stability of solutions of linear differential equations,Duke Math. Journal,10 (1943), pp. 643–647. However, the lemma holds for arbitrary continuousY(x) and non-negative continuousF(x). The valuek=0 is also possible. · Zbl 0061.18502 · doi:10.1215/S0012-7094-43-01059-2 [2] E. g. В. В. Немыцкий и В. В. Степанов, Качественная теория дифферен-пиальных уравнений (Москва, 1947), p. 19. · Zbl 1152.17301 [3] E. g.E. Kamke,Differentialgleichungen reeller Funktionen, p. 93. [4] M. Nagumo, Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichungen erster Ordnung,Japanese Journal of Math.,3 (1926), pp. 107–112. [5] This procedure may be generalized: If in (1)k=0,F(t) is continuous ina<x and $$\mathop {\lim }\limits_{x = a + 0} F(x)Y(x) = A$$ exists and $$\mathop {\lim }\limits_{\delta = a + 0} \delta e^{\int\limits_{a + \delta }^x {F\left( t \right)dt} } \leqq K(x)$$ , thenY(x)K(x). [6] O. Perron, Eine hinreichende Bedingung für Unität der Lösung von Differentialgleichungen erster Ordnung,Math. Zeitschrift,28 (1928), pp. 216–219.Perron has shown thatM=1 cannot be increased at all. · doi:10.1007/BF01181159 [7] W. F. Osgood, Beweis der Existenz einer Lösung der Differentialgleichungy’=f(x,y) ohne Hinzuname der Cauchy-Lipschitz Bedingung,Monatschefte f. Math. u. Phys.,9 (1898), pp. 331–345. [8] We make use of the procedure applied to prove the generalized Bellman lemma. [9] Here {$$\omega$$}(u) is subjected to the same conditions as in 3 and {$$\Omega$$}(u) is also the same function as in 3. [10] A similar formula holds for x {$$\xi$$}2. [11] Kamke, loc. cit.,Differentialgleichungen reeller Funktionen, p. 87. [12] Kamke, loc. cit,Differentialgleichungen reeler Funktionen, p. 78. [13] O. Perron, Über Ein- und Mehrdeutigkeit des Integrals eines systems von Differentialgleichungen,Math. Ann.,95 (1926), pp. 98–101. · doi:10.1007/BF01206598 [14] E. Bompiani, Un teorema di confronto ed un teorema di unicità per l’equazione differenzialey’=f(x, y), Rendiconti dell’Accad. dei Lincei, Classe di Scienze Fisiche, (6),1, (1925), pp. 298–302. [15] O. Perron Ein neuer Existenzbeweis für die Integrale der Differentialgleichungy’=f(x, y), Math. Ann.,76 (1915), pp. 471–484, especially pp. 473 and 479. · doi:10.1007/BF01458218 [16] Kamke, loc. cit.,Differentialgleichungen reeller Funktionen, p. 83. [17] J. Tamarkine, Sur le théorème d’unicité des solutions des équations différentielles ordinaires,Math. Zeitschrift,16 (1923), pp. 207–212. · doi:10.1007/BF01175682 [18] M. Lavrentiev, Sur une équation différentielle du premier ordre,Math. Zeitschrift,23 (1925), pp. 197–198. · doi:10.1007/BF01506227 [19] Kamke, loc. cit.Differentialgleichungen reeller Funktionen, p. 82, Satz 1. [20] Kamke, loc. cit.,Differentialgleichungen reeller Funktionen, p. 83.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.