Ryshik, I. M.; Gradstein, I. S. Summen-, Produkt- und Integraltafeln. Taebles of series, products, and integrals. (English, German) Zbl 0080.33703 Berlin: VEB Deutscher Verlag der Wissenschaften. XXIII, 438 S. [Zweisprachig] (1957). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 ReviewsCited in 61 Documents Keywords:Numerical Analysis PDF BibTeX XML Online Encyclopedia of Integer Sequences: Bessel polynomials y_n(x) (see A001498) evaluated at 2. Coefficients of Chebyshev polynomials of the first kind: triangle of coefficients in expansion of cos(n*x) in descending powers of cos(x). Triangle of coefficients in expansion of sin(n*x) (or sin(n*x)/cos(x) if n is even) in ascending powers of sin(x). a(n) = 2^n*Sum_{k=0..n} (n+k)!/((n-k)!*k!*4^k). Triangle giving coefficients of (n+1)!*B_n(x), where B_n(x) is a Bernoulli polynomial. Rising powers of x. Triangle giving coefficients of (n+1)!*B_n(x), where B_n(x) is a Bernoulli polynomial, ordered by falling powers of x.