Swan, R. G. Vector bundles and projective modules. (English) Zbl 0109.41601 Trans. Am. Math. Soc. 105, 264-277 (1962). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 ReviewsCited in 194 Documents Keywords:topology PDF BibTeX XML Cite \textit{R. G. Swan}, Trans. Am. Math. Soc. 105, 264--277 (1962; Zbl 0109.41601) Full Text: DOI References: [1] Maurice Auslander and David A. Buchsbaum, Homological dimension in local rings, Trans. Amer. Math. Soc. 85 (1957), 390 – 405. · Zbl 0078.02802 [2] Maurice Auslander and D. A. Buchsbaum, Unique factorization in regular local rings, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 733 – 734. · Zbl 0084.26504 [3] Hyman Bass, Projective modules over algebras, Ann. of Math. (2) 73 (1961), 532 – 542. · Zbl 0113.26003 [4] R. Bott and J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958), 87 – 89. · Zbl 0082.16602 [5] M.A. Kervaire, Non-parallelizability of the n-sphere for \( n > 7\), Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 280-283. · Zbl 0093.37303 [6] Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. · Zbl 0052.11701 [7] J. Milnor, Notes on characteristic classes, Princeton Univ. Press, Princeton, N. J., 1957 (mimeographed). [8] Masayoshi Nagata, A remark on the unique factorization theorem, J. Math. Soc. Japan 9 (1957), 143 – 145. · Zbl 0079.05405 [9] Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197 – 278 (French). · Zbl 0067.16201 [10] -, Modules projectifs et espaces fibrés a fibre vectorielle, exp. 23, Séminaire Dubreil-Pisot, Algèbre et théorie des nombres, Secrétariat mathématique, Paris, 1958. · Zbl 0132.41202 [11] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. · Zbl 0054.07103 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.