Moser, Jürgen A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. (English) Zbl 0111.09301 Commun. Pure Appl. Math. 13, 457-468 (1960). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 385 Documents Keywords:partial differential equations PDF BibTeX XML Cite \textit{J. Moser}, Commun. Pure Appl. Math. 13, 457--468 (1960; Zbl 0111.09301) Full Text: DOI References: [1] Hopf, Math. Z. 30 pp 404– (1929) [2] Hopf, Math. Z. 34 pp 194– (1932) [3] Morrey, Trans. Amer. Math. Soc. 43 pp 126– (1938) [4] De Giorgi, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., Ser. 3 3 pp 25– (1957) [5] Nash, Amer. J. Math. 80 pp 931– (1958) [6] and , On linear and non-linear elliptic boundary value problems in the plane, Atti Convegno Intern. Equaz. Deriv. Parziali, Trieste, 1954, pp. 141–167. [7] Stampacchia, Ann. Scuola Norm. Super. Pisa 12 pp 223– (1958) [8] Sobolev, Mat. Sbornik 4 pp 471– (1938) [9] Morrey, Math. Z. 72 pp 146– (1959) [10] also Univ. of California, Dept. of Math., Tech. Rep., 1959. [11] Problemi al contorno ellittici con dati discontinui dotati di soluzioni Hölderiane, Universita di Genova, Feb., 1960. [12] Nirenberg, Ann. Scuola Norm. Super. Pisa, Ser. 3 13 pp 1– (1959) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.