×

Cohomology groups of commutative Banach algebras. (English) Zbl 0114.31703


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839 – 848. · Zbl 0044.32601
[2] William G. Bade and Philip C. Curtis Jr., The Wedderburn decomposition of commutative Banach algebras, Amer. J. Math. 82 (1960), 851 – 866. · Zbl 0099.31903 · doi:10.2307/2372944
[3] N. Dunford and J. Schwartz, Linear operators. I, Interscience, New York, 1958. · Zbl 0084.10402
[4] Chester Feldman, The Wedderburn principal theorem in Banach algebras, Proc. Amer. Math. Soc. 2 (1951), 771 – 777. · Zbl 0043.26802
[5] G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46 (1945), 58 – 67. · Zbl 0063.02029 · doi:10.2307/1969145
[6] H. Kamowitz, Cohomology groups of commutative Banach algebras, Dissertation, Brown Univ., Providence, R.I., 1960 (unpublished). · Zbl 0114.31703
[7] Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. · Zbl 0052.11701
[8] D. J. Newman, The nonexistence of projections from \?\textonesuperior to \?\textonesuperior , Proc. Amer. Math. Soc. 12 (1961), 98 – 99. · Zbl 0095.30901
[9] Alex Rosenberg and Daniel Zelinsky, Cohomology of infinite algebras, Trans. Amer. Math. Soc. 82 (1956), 85 – 98. · Zbl 0070.26902
[10] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260 – 264. · Zbl 0067.35101 · doi:10.1007/BF01362370
[11] Daniel Zelinsky, Raising idempotents, Duke Math. J. 21 (1954), 315 – 322. · Zbl 0055.26204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.