×

The approximate functional equation for a class of zeta-functions. (English) Zbl 0116.27001


Keywords:

number theory
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Apostol, T. M., andA. Sklar: The approximate functional equation of Hecke’s Dirichlet series. Trans. Am. Math. Soc.86, 446-462 (1957). · Zbl 0079.05901
[2] Carlson, F.: Contributions à la théorie des séries de Dirichlet. Arkiv för Mat. Astr. och Fysik19, No. 25 (1926).
[3] Chandrasekharan, K., andRaghavan Narasimhan: Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. Math.76, 93-136 (1962). · Zbl 0211.37901
[4] Fischer, W.: Über die Zetafunktion des reell-quadratischen Zahlkörpers. Math. Z.57, 94-115 (1952). · Zbl 0049.30604
[5] Hardy, G. H., andJ. E. Littlewood: The approximate functional equation for ?(?) and ?2(?). Proc. London Math. Soc. (2)29, 81-97 (1929). · JFM 55.0203.05
[6] ?? ?? Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Math.41, 119-196 (1918). · JFM 46.0498.01
[7] Ingham, A. E.: Mean-value theorems in the theory of the Riemann zeta-function. Proc. London Math. Soc. (2)27, 273-300 (1926). · JFM 53.0313.01
[8] Linnik, Y. V.: A new proof of the Goldbach-Vinogradow theorem. Recueil Math. Moscow, N. S.19, 3-8 (1946). · Zbl 0063.03589
[9] Riesz, M.: Sur un théorème de la moyenne et ses applications. Acta Szeged1, 114-126 (1923). · JFM 49.0707.01
[10] Siegel, C. L.: Über Riemanns Nachlaß zur analytischen Zahlentheorie, Quellen und Studien zur Geschichte der Math. Astr. und Physik. Abt. B: Studien2, 45-80 (1932). · JFM 58.1037.07
[11] Suetuna, Z.: Über die approximative Funktionalgleichung für DirichletscheL-Funktionen. Japan. J. Math.9, 111-116 (1932). · Zbl 0005.35001
[12] Tchudakoff, N.: On Goldbach-Vinogradow’s theorem. Ann. Math.48, 515-545 (1947). · Zbl 0031.34701
[13] Titchmarsh, E. C.: The approximate functional equation for ?2(?). Quart. J. Math. (Oxford)9, 109-114 (1938). · Zbl 0018.39001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.