×

The index of primitivity of a non-negative matrix. (English) Zbl 0121.26303


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Berge, C.: The theory of graphs. London: Methuen, 1962. · Zbl 0097.38903
[2] Brauer, A.: On a problem of partitions. Amer. J. Math.64, 299-312 (1942). · Zbl 0061.06801
[3] ?, andB. M. Seelbinder: On a problem of partitions II. Amer. J. Math.76, 343-346 (1954). · Zbl 0056.26901
[4] ?, andJ. E. Shockley: On a problem of Frobenius. J. Reine Angew. Math.211, 215-220 (1962). · Zbl 0108.04604
[5] Debreu, G., andI. N. Herstein: Nonnegative square matrices. Econometrica21, 597-607 (1953). · Zbl 0051.00901
[6] Dulmage, A. L., andN. S. Mendelsohn: The exponent of a primitive matrix. Canad. Math. Bull.5, 241-244 (1962). · Zbl 0108.01203
[7] Frobenius, G.: Über Matrizen aus nicht negativen Elementen. S.-B. Preuss. Akad. Wiss. Berlin, 456-477 (1912). · JFM 43.0204.09
[8] Herstein, I. N.: A note on primitive matrices. Amer. Math. Monthly61, 18-20 (1954). · Zbl 0055.00907
[9] Holladay, J. C., andR. S. Varga: On powers of non-negative matrices. Proc. Amer. Math. Soc.9, 631-634 (1958). · Zbl 0096.00805
[10] Ma?ík, J., andV. Pták: Norms, spectra and combinatorial properties of matrices. Czechoslovak Math. J.10, 181-196 (1960). · Zbl 0093.24205
[11] Pták, V.: On a combinatorial theorem and its application to non-negative matrices. Czechoslovak Math. J.8, 487-495 (1958). · Zbl 0082.24402
[12] Rosenblatt, D.: On the graphs and asymptotic forms of finite Boolean relation matrices and stochastic matrices. Naval. Res. Logist. Quart.4, 151-167 (1957).
[13] Varga, R. S.: Matrix iterative analysis. New Jersey: Prentice-Hall, 1962. · Zbl 0133.08602
[14] Warshall, S.: A theorem on Boolean matrices. J.A.C.M.9, 11-12 (1962). · Zbl 0118.33104
[15] Wielandt, H.: Unzerlegbare, nicht negative Matrizen. Math. Z.52, 642-648 (1950). · Zbl 0035.29101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.