Sioson, F. M. Ideals in \((m+1)\)-semigroups. (English) Zbl 0135.03502 Ann. Mat. Pura Appl., IV. Ser. 68, 161-200 (1965). Reviewer: You-Feng Lin (Tampa) Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 5 Documents MSC: 20M99 Semigroups Keywords:group theory PDF BibTeX XML Cite \textit{F. M. Sioson}, Ann. Mat. Pura Appl. (4) 68, 161--200 (1965; Zbl 0135.03502) Full Text: DOI OpenURL References: [1] Bruck, R. H., A Survey of Binary Systems, 36-36 (1958), Berlin: Springer-Verlag, Berlin [2] Clifford, A. H.; Preston, G. B., The Algebraic Theory of Semigroups (1960), Providence: American Mathematical Society, Providence [3] Dörnte, W., Untersuchungen über einen verallgemeinerten Gruppenbegriff, Mathematische Zeitschrift, 28, 1-19 (1928) · JFM 54.0174.01 [4] Gottschalk, W.; Hedlund, G., Topological Dynamics (1955), Providence: American Mathematical Society, Providence · Zbl 0067.15204 [5] Kist, J., Minimal prime ideals in commutative semigroups, Proceedings of the London Mathematical Society, 13, 3, 31-50 (1963) · Zbl 0108.04004 [6] Lyapin, E. S., Semigroups (1963), Providence: American Mathematical Society, Providence [7] Post, E. L., Polyadic groups, Transactions of the American Mathematical Society, 48, 208-350 (1940) · Zbl 0025.01201 [8] Rees, D., On semigroups, Proceedings of the Cambridge Philosophical Society, 36, 387-400 (1939) · JFM 66.1207.01 [9] Sioson, F. M., Cyclic and homogenous m-semigroups, Proceedings of the Japan Academy, 39, 444-449 (1936) · Zbl 0117.26601 [10] Sioson, F. M., Generalisation d’une theoreme d’Hopkins-Brauer, Comptes Rendus de l’Academie des Sciences, Paris, 257, 1890-1892 (1963) · Zbl 0122.26503 [11] Tvermoes, H., Uber eine verallgemeinerung des Gruppenberriffs, Mathematica Scandinavica, 1, 18-30 (1953) · Zbl 0050.25304 [12] Wallace, A. D., Notes on Topological Semigroups (1964), Gainesville: University of Florida, Gainesville · Zbl 0135.06602 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.