Aumann, R. J.; Perles, M. A variational problem arising in economics. (English) Zbl 0137.39201 J. Math. Anal. Appl. 11, 488-503 (1965). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 47 Documents Keywords:operations research PDF BibTeX XML Cite \textit{R. J. Aumann} and \textit{M. Perles}, J. Math. Anal. Appl. 11, 488--503 (1965; Zbl 0137.39201) Full Text: DOI OpenURL References: [1] Shapley, L.S; Shubik, M, The core of an economy with non-convex preferences, () · Zbl 0154.45303 [2] {\scR. J. Aumann}. Integrals of set-valued functions. J. Math. Anal. Appl. in press. · Zbl 0163.06301 [3] {\scH. W. Kuhn and A. W. Tucker}. Non-linear programming. Proc. Second Berkeley Symp. Math. Statist. Probab., pp. 481-492. [4] Dunford, N; Schwartz, J.T, “linear operators.” part I, (1958), Interscience New York [5] Eggleston, H, Convexity, (1958), Cambridge Univ. Press · Zbl 0086.15302 [6] Künzi, H.P; Krelle, W, Nichtlineare programmierung, (1962), Springer Berlin · Zbl 0102.15502 [7] Yaari, M.E, On the existence of an optimal plan in a continuous-time allocation process, Econometrica, 32, 576-590, (1964) · Zbl 0204.18803 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.