×

A survey of quadratic systems. (English) Zbl 0143.11903


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bautin, N. N., Du nombre de cycles limites naissant en cas de variation des coefficients d’un état d’équilibre du type foyer ou centre, Dokl. Akad. Nauk SSSR, 24, 669-672 (1939) · Zbl 0023.03603
[2] Bautin, N. N., Amer. Math. Soc. Transl. No. 100 (1954) · Zbl 0059.08201
[3] Bautin, N. N., On periodic solutions of a system of differential equations \((R)\), Prikl. Mat. Meh., 18, 128 (1954)
[4] Belyustina, L. N., On conditions for the existence of a center \((R)\), Prikl. Mat. Meh., 18, 511 (1954)
[8] Büchel, W., Zur Topologie der durch eine gewöhnliche Differentialgleichung erster Ordnung und ersten Grades definierten Kurvenschar, Mitteil. der Math. Gesellsch. in Hamburg, 4, 33-68 (1904) · JFM 35.0339.01
[9] Butenin, N. V., Maintained vibrating systems of gyroscopic forces \((R)\), Prikl. Mat. Meh., 6, 327-346 (1942) · Zbl 0063.00676
[10] Čerkas, L. A., Algebraic solutions of the equation \(dydx = P(x, y)Q(x, y)\), where \(P\) and \(Q\) are second degree polynomials \((R)\), Dokl. Akad. Nauk BSSR, 7, 732-735 (1963)
[11] Chandrasekhar, S., An Introduction to the Study of Stellar Structure (1939), Chicago Univ. Press, (repr. Dover, New York, 1957) · JFM 65.1543.02
[12] Chin, Yuan-Shun, On algebraic limit cycles of degree 2 of the differential equation \(dydx = ∑0 ⩽ i + j ⩽ 2aijx^iy^j\)∑0 ⩽ i + j ⩽ \(2 bijx^i y^j\), Sci. Sinica, 7, 934-945 (1958) · Zbl 0084.08302
[13] Coppel, W. A., On a differential equation of boundary-layer theory, Phil. Trans. Roy. Soc. Ser. A, 253, 101-136 (1961) · Zbl 0093.19105
[14] Deng, Yao-Hua; Luo, Ding-Jun, A qualitative study of the integral curves of the differential equation \(dydx = (q00 + q10x + q01y + q 20x^2 + q11xy + q02y^2)\) P00 + P10x + p01y + \(p20x^2\) + p11xy + p02y)\). III. The number of limit cycles of type 1, Chinese Math., 5, 129-138 (1964)
[15] Dulac, H., Détermination et intégration d’une certaine classe d’équations différentielles ayant pour point singulier un centre, Bull. Sci. Math., 32, 230-252 (1908), (2) · JFM 39.0374.01
[16] Frommer, M., Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmtheitsstellen, Math. Ann., 109, 395-424 (1934) · JFM 60.1094.01
[17] Gause, G. F., The Struggle for Existence (1934), Williams and Wilkins: Williams and Wilkins Baltimore
[18] Guderley, G.; Yoshihara, H., An axial-symmetric transonic flow pattern, Quart. Appl. Math., 8, 333-339 (1950) · Zbl 0042.19902
[19] Jones, C. W., On reducible non-linear differential equations occurring in mechanics, (Proc. Roy. Soc. Ser. A, 217 (1953)), 327-343 · Zbl 0052.31303
[20] Kapteyn, W., Over de middelpunten de integraalkrommen van differentiaalvergelijkingen van de eerste orde en den eersten graad, Konikl. Nederl. Ak. Versl., 19, 1446-1457 (1911) · JFM 42.0333.01
[21] Kapteyn, W., Nieuw onderzoek omtrent de middelpunten der integralen van differentiaalvergelijkingen van de eerste order en den eersten graad, Konikl. Nederl. Ak. Versl., 21, 27-33 (1912) · JFM 43.0389.03
[22] Kestin, K.; Zaremba, S. K., Adiabatic one-dimensional flow of a perfect gas through a rotating tube of uniform cross section, Aeronaut. Quart., 4, 373-399 (1954)
[23] Kukles, I. S.; Casanova, M., On the distribution of critical points of the first and second group \((R)\), Izv. Vysš. Učebn. Zaved. Matematika, No. 6, 88-97 (1964)
[24] Latipov, H. R., On the global behavior of the characteristics of a differential equation on the equator of the Poincaré sphere \((R)\), (Investigations on Differential Equations (1963), Akad. Nauk Uzbek. SSR: Akad. Nauk Uzbek. SSR Tashkent), 110-116
[25] Latipov, H. R., On the distribution of critical points of Frommer’s equation over the entire plane \((R)\), Izv. Vysš. Učebn. Zaved. Matematika, No. 1 (44), 96-104 (1965)
[26] Latipov, H. R.; S̆irov, I. I., On the global behavior of the characteristics of the differential equation \(dydx = −[x + ax^2 + (2b + α) xy + cy^2]\)[y + \(by^2\) + (2c + β) xy + \(dy^2]\) (R)\), (Investigations on differential equations (1963), Akad. Nauk Uzbek. SSR: Akad. Nauk Uzbek. SSR Tashkent), 117-131
[27] Lukaševič, N. A., A general qualitative picture for a system of differential equations \(dxdt = ∑i + j = 0^2 aijx^i y^j\), dydt = ∑i + \(j = 0^2 bijx^i y^j\) having an equilibrium point of the center type \((R)\), Dokl. Akad. Nauk BSSR, 4, 497-500 (1960)
[28] Lyagina, L. S., The integral curves of the equation \(y′ = (ax^2 + bxy + cy^2)(dx^2\) + exy + \(fy^2)\) (R)\), Uspehi Mat. Nauk, 6, No. 2 (42), 171-183 (1951) · Zbl 0042.32401
[29] Mayer, A., On the theory of coupled vibrations of two self-excited generators, Tech. Phys. USSR, 2, 465-481 (1935)
[30] Mayer, A., A contribution to the theory of forced oscillations in a generator with two degrees of freedom, Tech. Phys. USSR, 3, 1056-1071 (1936) · JFM 62.1524.04
[31] Petrovskiĭ, I. G.; Landis, E. M., Amer. Math. Soc. Transl. Ser. 2, 10, 177-221 (1958) · Zbl 0080.07502
[32] Petrovskiĭ, I. G.; Landis, E. M., Corrections to the articles “On the number of limit cycles of the equation \(dydx = P(x, y)Q(x, y)\), where \(P\) and \(Q\) are polynomials of the second degree” and “ On the number of limit cycles of the equation \(dydx = P (x, y)Q(x, y)\), where \(P\) and \(Q\) are polynomials \((R)\)”, Mat. Sb., 48, 90, 253-255 (1959)
[33] Richardson, L. F., Generalized Foreign Politics, (Brit. J. Psychol. Monog. Suppl. No. 23 (1939), Cambridge Univ. Press), 23-26
[34] Saharnikov, N. A., On Frommer’s conditions for the existence of a center \((R)\), Prikl. Mat. Meh., 12, 669-670 (1948)
[35] Sibirskiĭ, K. S., On conditions for the presence of a center and a focus \((R)\), Kišinev. Gos. Univ. Uč. Zap., 11, 115-117 (1954)
[36] Sibirskiĭ, K. S., The principle of symmetry and the problem of the center \((R)\), Kišinev. Gos. Univ. Uč. Zap., 17, 27-34 (1955)
[37] Taylor, G. I., Recent work on the flow of compressible fluids, J. London Math. Soc., 5, 224-240 (1930) · JFM 56.0711.02
[38] Tung, Chin-Chu, Positions of limit cycles of the system \(dxdt = ∑0 ⩽ i + k ⩽ 2 aikx^iy^k\), dydt = ∑0 ⩽ i + k ⩽ 2b \(ikx^i y^k\), Sci. Sinica, 8, 151-171 (1959)
[39] Tung, Chin-Chu, The structure of the separatrix cycles of the system \(dxdt = ∑0 ⩽ i + k ⩽ 2 aikx^iy^k\), dydt = ∑ 0 ⩽ i + k ⩽ \(2 bikx^i y^k\), Chinese Math., 3, 277-284 (1963)
[40] Vorob’ev, A. P., Cycles about a singular point of the node type \((R)\), Dokl. Akad. Nauk. BSSR, 4, 369-371 (1960)
[41] Weyl, H., On the differential equations of the simplest boundary-layer problems, Ann. of Math., 43, 381-407 (1942) · Zbl 0061.18002
[42] Yeh, Yen-Chien, Periodic solutions and limit cycles of certain non-linear differential systems, Sci. Record N.S., 1, 391-394 (1957) · Zbl 0082.08101
[43] Yeh, Yen-Chien, Limit cycles of certain nonlinear differential systems, II, Sci. Record N.S., 2, 276-279 (1958) · Zbl 0142.35601
[44] Yeh, Yen-Chien, A qualitative study of the integral curves of the differential equation \(dydx = q00 + q10x + q01y + q20x^2 + q11xy + q02y^2\) p00 + p10x + p01y +\(p20x^2\) + p11xy + \(p02y^2\), II, Uniqueness of limit cycles, Chinese Math., 3, 62-70 (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.