Moser, Jürgen A rapidly convergent iteration method and non-linear partial differential equations. I, II. (English) Zbl 0144.18202 Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20, 265-315, 499-535 (1966). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 ReviewsCited in 274 Documents Keywords:numerical analysis × Cite Format Result Cite Review PDF Full Text: EuDML References: [1] 1 J. Schauder, Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichung zweiter Order in beliebiger Anzahl von unabhängigen Veränderlichen. Fund. Math.24, 1935, pp. 213-246. Zbl0011.35202 JFM61.0541.02 · Zbl 0011.35202 [2] 2 K.O. Friedrichs, Symmetric Hyperbolic Linear Differential Equation8. Comm. Pure Appl. Math.7, 1954, pp. 345-392. Zbl0059.08902 MR62932 · Zbl 0059.08902 · doi:10.1002/cpa.3160070206 [3] 3 J. Nash, The Imbedding of Riemannian Manifolds, Ann. Math.63, 1956, pp. 20-63. Zbl0070.38603 MR75639 · Zbl 0070.38603 · doi:10.2307/1969989 [4] 4 J. Schwartz, On Nash’s ’Implicit Function Theorem, Comm Pure Appl. Math, 13, 1960, pp. 509-530. Zbl0178.51002 MR114144 · Zbl 0178.51002 · doi:10.1002/cpa.3160130311 [5] 4’ J. Mosfr, A New Technique for the Construction of Solutions of Nonlinear Differential Equations. Proc. Nat. Acad. Sciences, Vol. 47, No. 11, pp. 1824-1831, 1961. Zbl0104.30503 MR132859 · Zbl 0104.30503 · doi:10.1073/pnas.47.11.1824 [6] 4” J. Moser, On Invariant Curves of Area-Preserving Mappings of an Annulus. Nachr. Akad. Wiss. Göttingen Math. Phys. Kl.IIa, No. 1, 1962, pp. 1-20. Zbl0107.29301 MR147741 · Zbl 0107.29301 [7] 5 C.L. Siegel, Iteration of Analytic Functions. Ann. of Math.43, 1942, pp. 607-612. Zbl0061.14904 MR7044 · Zbl 0061.14904 · doi:10.2307/1968952 [8] 5’ C.L. Siegel, Über die Normalform Analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Nachr. Akad. Wiss., Göttingen, Math. Phys. Kl, IIa, 1952, pp. 21-30. Zbl0047.32901 MR57407 · Zbl 0047.32901 [9] 6 A.N. Kolmogorov, Doklad. Nauk, USSR98, 1954, p. 527-530. Zbl0056.31502 · Zbl 0056.31502 [10] 7 A.N. Kolmogorov, General Theory of Dynamical Systems and Classical Mechanics. Proc. of Intl. Congress of Math., Amsterdam, 1954, (Amsterdam: Erven P. Nordhoff, 1957), Vol. 1, pp. 315-333. Zbl0095.17103 · Zbl 0095.17103 [11] 8 V.I. Arnold, <Small divisors > I, On mappings of a circle onto itself, Isvest. Akad. Nauk, ser. mat., 25, No. 1, 1961, pp. 21-86. MR140699 [12] 9 V.I. Arnold, Small Divisor and Stability Problems in Classical ana Celestial Mechanics. Uspekhi Mat. Nauk USSR, Vol. 18, Ser. 6 (119), 1963, pp. 81-192. MR170705 [13] 10 V.I. Arnold, Proof of A N. Kolmogorov’s Theorem on the Preservation of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian. Uspekhi Mat. N. USSR, Vol. 18, Ser. 5 (113), 1963, pp 13-40. Zbl0129.16606 MR163025 · Zbl 0129.16606 · doi:10.1070/rm1963v018n05ABEH004130 [14] 11 K.O. Friedrichs, Symmetric Positive Linear Differential Equations, Comm. Pure Appl. Math.11, 1458, pp. 333-418. Zbl0083.31802 MR100718 · Zbl 0083.31802 · doi:10.1002/cpa.3160110306 [15] 12 N.N. Bogolioubov, and Y.A. Mitropolski, The Method of Integral Manifolds in Nonliriear Mechanics, Contrib. to Differential Equations, Vol. II, 1963, pp. 123-196. Zbl0137.28406 · Zbl 0137.28406 [16] 13 S.P. Diliberto, Perturbation Theorems for Periodic Surfaces. I, Rend. del Circ. Mat. Palermo (2), 9, 1961, pp. 265-299II, Rend. del Circ. Mat. Palermo (2), 10, 1962, pp. 111-161. Zbl0109.31401 MR142853 · Zbl 0109.31401 [17] 13’ S.P. Diliberto, Pertubation Theory of Invariant Surfaces I-IV. Mimeographed ONR Reports, Berkeley, 1956/57. [18] 14 Kyner, W.T., Invariant manifolds, Rend. del Circolo Matematico Palermo, Ser. II, Vol. 9, 1961, pp. 98-110. Zbl0104.06303 MR149038 · Zbl 0104.06303 · doi:10.1007/BF02844811 [19] 14’ J.K. Hale, Integral Manifolds of Perturbed Differential Systems, Annals of Math., 73, 1961, pp. 496-531. Zbl0163.32804 MR123786 · Zbl 0163.32804 · doi:10.2307/1970314 [20] 15 I. Kupka, Stabilité des varietés invariants d’un champ de vecteurs voui- les petites perturbations. Compt. Rend. Acad. Sc. Paris, 258, Group 1, 1964, pp. 4197-4200. Zbl0117.05403 MR162036 · Zbl 0117.05403 [21] 16 L. Nirenberg, On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, Ser. 3, 13 (1959), pp. 116-162. Zbl0088.07601 MR109940 · Zbl 0088.07601 [22] 17 Gagliardo, E., Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., 8, 1959, pp. 24-51. Zbl0199.44701 MR109295 · Zbl 0199.44701 [23] 18 J.J. Kohn and L. Nirenberg, Non-coercive boundary value problems, to appear in Comm. Pure Appl. Math. (See under < elliptic regalarization >). Zbl0125.33302 MR181815 · Zbl 0125.33302 · doi:10.1002/cpa.3160180305 [24] 19 W.T. Kyner, A fixed point theorem. Contributions to the Theory on Nonlinear Oscillation, Vol. 3, Princeton University Press, Annals of Math. Studies36, 1956, pp. 197-205. Zbl0073.33501 MR81472 · Zbl 0073.33501 [25] 20 W.T. Kyner, Small Periodic Perturbations of an Autonomous System of Vector Equations. Contributions to the Theory of Nonlinear Oscillations Vol. 4, Princeton, 1958. MR101946 · Zbl 0082.30103 [26] 21 R. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, NYU Report, IMM-NYLT 333, Oct. 1964, to be published in Comm. Pure Appl. Math. [27] 22 C.L. Siegel, Vorlesungen über, Himmelsmechanik, Springer, 1956. Zbl0070.45403 MR80009 · Zbl 0070.45403 [28] 23 H. Cremer, über die Häufigkeit der Nichtzentren, Math. Ann.115, pp. 607-611, 1942. JFM64.0289.02 · JFM 64.0289.02 [29] 24 N. Levinson, Transformation of an analytic function of several variables to a canonical form. Duke Math. Journal28, 1961, pp. 345-353. (See Theorem 2). Zbl0100.29002 MR145101 · Zbl 0100.29002 · doi:10.1215/S0012-7094-61-02831-9 [30] 25 N.I. Achieser, Vorlesungen über Approximationstheorie, Akd. Verlag. Berlin1953, translated from Russian, Chapter V. Zbl0052.29002 MR61692 · Zbl 0052.29002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.