Elliptische Differenzenoperatoren unter Dirichlet-Randbedingungen. (German) Zbl 0149.07202

Full Text: DOI EuDML


[1] Agmon, Sh.: Lectures on elliptic boundary value problems, Princeton: Van Nostrand 1965. · Zbl 0142.37401
[2] Bers, L., F. John, andM. Schechter: Partial differential equations. New York: Interscience Publishers 1964.
[3] Browder, F. E.: Existence and uniqueness theorems for solutions of nonlinear boundary value problems. Proceedings of Symposia in Applied Mathematics, vol. XVII, 24-49 (1965). · Zbl 0145.35302
[4] Céa, J.: Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier (Grenoble)14, 345-444 (1964). · Zbl 0127.08003
[5] Courant, R., K. Friedrichs u.H. Lewy: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann.100, 32-74 (1928).
[6] Lady?enskaya, O. A.: The method of finite differences in the theory of partial differential equations. Am. Math. Soc. Translations (2),20, 77-104 (1962).
[7] Nirenberg, L.: Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math.8, 648-674 (1955). · Zbl 0067.07602 · doi:10.1002/cpa.3160080414
[8] Saul’yev, V. K.: On a class of elliptic equations solvable by the method of finite differences. Vy?isl. Math.1, 81-86 (1957).
[9] Smirnov, W. I.: Lehraang der höheren Mathematik, Bd. V: Berlin: Deutscher Verlag der Wissenschaften 1962.
[10] Stummel, P.: Über die Differenzenapproximation des Dirichletproblems für einer lineare elliptische Differentialgleichung zweiter Ordnung. Math. Ann.163, 321-339 (1966). · Zbl 0142.37702 · doi:10.1007/BF02052517
[11] Thomée, V.: Elliptic difference operators and Dirichlet’s problem. Contrib. to Diff. Equations, vol. III, 301-324 (1964).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.