Methods of refining the classical theory of bending and extension of plates. (English. Russian original) Zbl 0152.43707

PMM, J. Appl. Math. Mech. 29, 914-925 (1965); translation from Prikl. Mat. Mekh. 29, 771-781 (1965).

Full Text: DOI


[1] Gol’denveizer, A. L., Postroenie priblizhennoi teorii izgiba plastinki metodom asimptoticheskogo integrirovaniia uravnenii teorii uprugosti, PMM, Vol.26, N≗ 4 (1962)
[2] Gol’denveizer, A. L.; Kolos, A. V., K postroeniiu dvumernykh uravnenii teorii uprugikh tonkikh plastinok, PMM, Vol.29, N≗ 1 (1965)
[3] Kolos, A. V., Ob utochnenii Klassicheskoi teorii izgiba kruglykh plastlnok, PMM, Vol.28, N≗ 3 (1964)
[4] Friedrichs, K.; Dressler, R. F., A boundary-layer theory for elastic plates, Communs pure appl.Math., Vol.14, N≗ 1 (1961) · Zbl 0096.40001
[5] Reiss, E. L.; Locke, S., On the theory of plane stress, Q.appl.Math.., Vol.19, N≗ 3 (1961) · Zbl 0107.18303
[6] Gusein-Zade, M. I., Ob usloviiakh sushchestvovaniia zatukhaiushchikh reshenii ploskoi zadachi teorii uprugosti dlia polupolosy, PMM, Vol. 29, N≗ 2 (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.