Birkhoff, Garrett Lattice theory. Third (new) ed. (English) Zbl 0153.02501 American Mathematical Society (AMS). Colloquium Publications. Vol. 25. Providence, R.I.: American Mathematical Society. VI, 418 p. (1967). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 29 ReviewsCited in 1297 Documents MSC: 06-02 Research exposition (monographs, survey articles) pertaining to ordered structures Keywords:ordered sets, lattices Citations:Zbl 0033.10103; Zbl 0126.03801 × Cite Format Result Cite Review PDF Online Encyclopedia of Integer Sequences: Dedekind numbers or Dedekind’s problem: number of monotone Boolean functions of n variables, number of antichains of subsets of an n-set, number of elements in a free distributive lattice on n generators, number of Sperner families. Dedekind numbers: inequivalent monotone Boolean functions of n or fewer variables, or antichains of subsets of an n-set. Dedekind numbers: number of monotone Boolean functions or antichains of subsets of an n-set containing at least one nonempty set. Dedekind numbers: monotone Boolean functions, or nonempty antichains of subsets of an n-set. Number of ACI algebras or semilattices on n generators, with no identity or annihilator. Number of ACI algebras or semilattices on n generators with no identity element. Number of ACI algebras (or semilattices) on n generators with no annihilator. Number of ACI algebras (or semilattices) on n generators. Cardinality of the free modular lattice generated by two elements and a chain of length n.