Frisch, J. Points de platitude d’un morphisme d’espaces analytiques complexes. (French) Zbl 0167.06803 Invent. Math. 4, 118-138 (1967). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 113 Documents Keywords:complex functions PDFBibTeX XMLCite \textit{J. Frisch}, Invent. Math. 4, 118--138 (1967; Zbl 0167.06803) Full Text: DOI EuDML References: [1] Bourbaki, N.: Eléments de mathématique, Algèbre commutative. Paris: Hermann 1961. [2] SéminaireH. Cartan 1960-61: Familles d’espaces complexes... (Secrétariat mathématique de l’E. N. S. 11 rue Pierre Curie, Paris 5 ème). [3] Douady, A.: Le Problème des modules pour les sous-esapces analytiques compacts d’un espace analytique donné. Ann. Inst. Fourier, Grenoble16, 1 (1966). · Zbl 0146.31103 [4] Grothendieck, A.: Eléments de géométrie algébrique, chapitre IV, Publications Mathématiques de l’I.H.E.S., n{\(\deg\)}28. Essonne, France: Bures-sur-Yvette 1966. [5] Hervé, M.: Several complex variables, Tata Institute, Bombay. Oxford University Press 1953. [6] Lojasiewicz, S.: Triangulation of semi-analytic sets, Ann. Sc. Norm. Pisa, série III,18, Fasc. IV (1964). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.