×

Prime ideals and maximal ideals in semigroups. (English) Zbl 0176.29503


MSC:

20M12 Ideal theory for semigroups
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] W. M. Faucett R. J. Koch, K. Numakura: Complements of maximal ideals in compact semigroups. Duke Math. J. 22 (1955), 655-661. · Zbl 0065.25303
[2] L. Lesieur R. Croisot: Algèbre noethérienne non commutative. Mémorial des Sciences Mathématiques, Paris, 1963. · Zbl 0115.02903
[3] Jiang Luh: On the concept of radical of semigroups having kernel. Portugaliae Mathematica 19 (1960), 189-198. · Zbl 0095.01405
[4] R. J. Koch, A. D. Wallace: Maximal ideals in compact semigroups. Duke Math. J. 21 (1954), 681-685. · Zbl 0057.01502
[5] K. Numakura: Prime ideals and idempotents in compact semigroups. Duke Math. J. 24 (1957), 671-680. · Zbl 0218.22004
[6] Št. Schwarz: O maksimal’nych idealach v teorii polugrupp I, II. Czechoslovak Math. J. 3 (78) (1953), 139-153, 365-383.
[7] Št. Schwarz: Maximálne ideály a štruktúra pologrúp. Mat. fyz. časopis SAV 3 (1953), 17-39.
[8] Št. Schwarz: Subsemigroups of simple semigroups. Czechoslovak Math. J. 13 (88) (1963), 226-239. · Zbl 0122.02402
[9] O. Zariski P. Samuel: Commutative algebra, vol. I. Princeton, 1958. · Zbl 0081.26501
[10] R. Šulka: O nil’potentnych elementach, idealach i radikalach polugruppy. Mat. fyz. časopis SAV 13 (1963), 209-222.
[11] R. Fulp: Generalized semigroup kernels. Pacific J. Math. 24 (1968), 93 - 101. · Zbl 0165.03501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.