×

A new generalization of the Schauder fixed point theorem. (English) Zbl 0176.45203


PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Browder, F. E.: On a generalization of the Schauder fixed point theorem. Duke Math. J.26, 291-304 (1959). · Zbl 0086.10203 · doi:10.1215/S0012-7094-59-02629-8
[2] ?? Another generalization of the Schauder fixed point theorem. Duke Math. J.32, 399-406 (1965). · Zbl 0128.35901 · doi:10.1215/S0012-7094-65-03239-4
[3] ?? A further generalization of the Schauder fixed point theorem. Duke Math. J.32, 575-578 (1965). · Zbl 0137.32601 · doi:10.1215/S0012-7094-65-03261-8
[4] ?? Fixed point theorem on infinite dimensional manifolds. Trans. Am. Math. Soc.119, 179-194 (1965). · Zbl 0132.18803 · doi:10.1090/S0002-9947-1965-0195082-2
[5] ?? Nonlinear operators in Banach spaces. Math. Ann.162, 280-283 (1966). · Zbl 0148.13403 · doi:10.1007/BF01360916
[6] ?? Nonlinear monotone operators and convex sets in Banach spaces. Bull. Am. Math. Soc.71, 780-785 (1965). · Zbl 0138.39902 · doi:10.1090/S0002-9904-1965-11391-X
[7] – Problèmes nonlinéaires. 153 pp. Univ. of Montreal Press 1966.
[8] ?? On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.56, 419-425 (1966). · Zbl 0143.36902 · doi:10.1073/pnas.56.2.419
[9] – Nonlinear maximal monotone operators in Banach spaces. To appear in Math. Ann.
[10] ?? Existence and perturbation theorems for nonlinear maximal monotone operators in Banach spaces. Bull. Am. Math. Soc.73, 322-327 (1967). · Zbl 0176.45205 · doi:10.1090/S0002-9904-1967-11734-8
[11] Granas, A.: Introduction to the topology of functional spaces. Univ. of Chicago Notes 1960. · Zbl 0099.32605
[12] Hartman, P., andG. Stampacchia: On some nonlinear elliptic functional differential equations. Acta. Math.115, 271-310 (1966). · Zbl 0142.38102 · doi:10.1007/BF02392210
[13] Köthe, G.: Topologische lineare Räume I. Berlin, Göttingen, Heidelberg: Springer 1960. · Zbl 0093.11901
[14] Leray, J., andJ. Schauder: Topologie et équations fonctionelles. Ann. sci. école norm. super.51, 45-78 (1934).
[15] Schauder, J.: Der Fixpunktsatz in Funktionalräumen. Studia Math.2, 171-180 (1930).
[16] Tychonoff, A.: Ein Fixpunktsatz. Math. Ann.111, 767-776 (1935). · Zbl 0012.30803 · doi:10.1007/BF01472256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.