The numerical solution of parabolic differential equations using variational methods. (English) Zbl 0183.44701

Full Text: DOI EuDML


[1] Anderssen, R. S.: The adjoint method and the density invertibility of a class of parabolic operator equations, Part 1 : Theory. J. Aust. Math. Soc. (accepted).
[2] – The adjoint method and the densely invertibility of a class of parabolic operator equations, Part 2: Application to simple parabolic. J. Aust. Math. Soc. (Accepted).
[3] Bauer, F. L., H. Rutishauser, andE. Stiefel: New aspects in numerical quadrature. Proc. of Symp. in Appl. Math. 15: High-speed computing and experimental arithmetic (1963), Amer. Math. Soc., Providence, R.1. · Zbl 0133.09201
[4] Brauer, A.: The theorems of Lederman and Ostrowski on positive matrices. Duke Math. J.24, 265–274 (1957). · Zbl 0081.25103 · doi:10.1215/S0012-7094-57-02434-1
[5] Copson, E. T.: An introduction to the theory of functions of a complex variable. Oxford: The Clarendon Press 1935. · Zbl 0012.16902
[6] Courant, R., andD. Hilbert: Methods of mathematical physics, vol. 1. New York: Interscience Series 1953. · Zbl 0051.28802
[7] Forsythe, G. E., andW. R. Wasow: Finite difference methods for partial differential equations. New York: John Wiley 1960. · Zbl 0099.11103
[8] Householder, A. S.: The theory of matrices in numerical analysis. New York: Blaisdell Publishing Company 1964. · Zbl 0161.12101
[9] Kaczmarz, S., andH. Steinhaus: Theorie der Orthogonalreihen. New York: Chelsea Publishing Company 1951. · Zbl 0045.33601
[10] Lerch, M.: Sur un point de la théorie des fonctions géneratrices d’Abel. Acta Math.27, 339–351 (1903). · JFM 34.0424.03 · doi:10.1007/BF02421315
[11] Lewin, S.: Integral equations and function spaces (german). Math. Sbor.39, 3–72 (1932).
[12] Mikhlin, S. G.: A note on coordinate functions (russian). Izv. Vysshich Uschebnych zavedenij, matem.5, 91–94 (1958).
[13] —- On the stability of the method of Ritz (russian). Dokl. Akad. Nauk SSSR135, 16–19 (1960).
[14] —- Some conditions for the stability of the method of Ritz (russian). Izk. Len. gos. un-ta13, 40–51 (1961).
[15] —- On the stability of some numerical processes (russian). Dokl. Akad. Nauk. SSSR157, 271–274 (1964).
[16] —- The problem of the minimum of a quadratic functional. (English translation of the russian.) London: Holden-Day 1965
[17] —- The numerical realization of variational methods (russian). Physics-Mathematics Series. Moscow: Nauka Publishing House 1966.
[18] Pell, A.: Biorthogonal systems of functions. Trans. Amer. Math. Soc.12, 135–164 (1911). · JFM 42.0369.02 · doi:10.1090/S0002-9947-1911-1500884-8
[19] Richtmyer, R. D.: Difference methods for initial-value problems. Interscience tracts in pure and applied mathematics, vol. 4. New York: Interscience 1957 · Zbl 0079.33702
[20] Saul’yev, V. K.: Integration of equations of parabolic type by the method of nets (translation of the russian). International series of monographs in pure and applied mathematics, vol. 54. Oxford: Pergamon Press 1964.
[21] Taldykin, A. T.: Systems of elements of a Hilbert space and series formed with them (russian). Math. Sbor.29, 79–120 (1951).
[22] Wegner, U.: Contributi alla teoria dei procedimenti iterativi per la risduzione numerica dei sistemi di equazioni lineari algebriche. Atti Accad. Naz. Lincei Mem. cl. sci. Fix. Mat. Nat.4, 1–48 (1953). · Zbl 0053.26101
[23] Widder, D. V.: The Laplace transform. Princeton: Princeton University Press 1941. · Zbl 0063.08245
[24] Zaanen, A. C.: Introduction to the theory of integration. Amsterdam: North Holland Publishing Company 1958. · Zbl 0081.27703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.