The logic of inexact concepts. (English) Zbl 0184.00903


03-XX Mathematical logic and foundations


general logic
Full Text: DOI


[1] R. Bellman, R. Kalaba, and L. A. Zadeh, ?Abstraction and Pattern Classification?, Journal of Mathematical Analysis and Applications 13 (1966) 1-7. · Zbl 0134.15305 · doi:10.1016/0022-247X(66)90071-0
[2] G. Birkhoff, Lattice Theory, AMS Colloquium Publications 25, 2nd edition, Providence, R.I., 1948.
[3] M. Black, ?Reasoning with Loose Concepts?, Dialogue 2 (1963) 1-12. · doi:10.1017/S001221730004083X
[4] M. Black, ?Vagueness?, Phil. of Science 4 (1937) 427-455. · doi:10.1086/286476
[5] G. Boole, An Investigation into the Laws of Thought, London 1854 (reprinted as paperback by Open Court Publishing Co., Chicago, 1940).
[6] C. C. Chang and H. J. Keisler, Continuous Model Theory (Annals of Math. Studies 58), Princeton 1966. · Zbl 0149.00402
[7] P. J. Cohen, Set Theory and the Continuum Hypothesis, Benjamin Co., New York 1966. · Zbl 0182.01301
[8] P. J. Cohen, and R. Hirsch, ?Non-Cantorian Set Theory?, Scientific American, Dec. 1967, 104-116.
[9] C. H. Coombs, H. Raiffa, and R. M. Thrall, ?Some Views on Mathematical Models and Measurement Theory?, Psychol. Review 61 (1954) 132-144. · Zbl 0058.00403 · doi:10.1037/h0063044
[10] J. A. Goguen, ?L-fuzzy Sets?, Journal of Mathematical Analysis and Applications 18 (1967) 145-174. · Zbl 0145.24404 · doi:10.1016/0022-247X(67)90189-8
[11] J. A. Goguen, ?Categories of Fuzzy Sets: Applications of Non-Cantorian Set Theory?, Ph.D. dissertation, University of California at Berkeley, May 1968.
[12] J. A. Goguen, ?Representing Inexact Concepts?, in preparation.
[13] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 4th edition, 1960. · Zbl 0086.25803
[14] J. Kelley, General Topology, Van Nostrand Co., Princeton 1955.
[15] S. K?rner, The Philosophy of Mathematics, Harper Torchbooks, New York 1960.
[16] R. C. Lyndon, Notes on Logic, Van Nostrand Mathematical Studies 6, Princeton 1966. · Zbl 0168.00301
[17] S. MacLane, ?Categorical Algebra?, Bull. Am. Math. Soc. 71 (1965) 40-106. · Zbl 0161.01601 · doi:10.1090/S0002-9904-1965-11234-4
[18] S. MacLane and G. Birkhoff, Algebra, Macmillan, New York 1968
[19] F. Perls, R. Hefferline, and P. Goodman, Gestalt Therapy, Dell Publishing Co., New York 1965.
[20] P. E. Rutherford, Introduction to Lattice Theory, Oliver and Boyd, London, 1965. · Zbl 0127.24904
[21] A. L. Samuel, ?Some Studies in Machine Learning Using the Game of Checkers?, IBM Journal of Research and Development 3 (1959) 211-229. · doi:10.1147/rd.33.0210
[22] A. L. Samuel, ?Some Studies in Machine Learning Using the Game of Checkers II?, IBM Journal of Research and Development 11 (1967) 601-617. · doi:10.1147/rd.116.0601
[23] D. Scott and R. Solovay, Boolean Valued Models for Set Theories, to appear.
[24] P. Suppes and J. G. Zinnes, ?Basic Measurement Theory?, in Handbook of Mathematical Psychology, Vol. I (ed. by Luce, Bush, and Galanter), Wiley, New York 1963, pp. 1-76.
[25] A. Watts, The Book, Collier Books, New York 1966.
[26] L. A. Zadeh, ?Fuzzy Sets?, Information and Control 8 (1965) 338-353. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[27] L. A. Zadeh, ?Fuzzy Sets and Systems?, Proceedings of a Symposium on Systems Theory, Polytechnic Press of Polytechnic Institute of Brooklyn, New York 1965, pp. 29-37.
[28] L. A. Zadeh, ?Optimality and Non-Scalar-Valued Performance Criteria?, IEEE Transactions on Automatic Control, AC-8 (1963) 315-316.
[29] L. A. Zadeh, ?Fuzzy Algorithms?, Information and Control 12 (1968) 94-102. · Zbl 0182.33301 · doi:10.1016/S0019-9958(68)90211-8
[30] L. A. Zadeh, ?Probability Measures of Fuzzy Events?, to appear in Journal of Mathematical Analysis and Applications. · Zbl 0174.49002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.