Lower bounds for solutions of Schrödinger equations. (English) Zbl 0211.40703


35J10 Schrödinger operator, Schrödinger equation
Full Text: DOI


[1] S. Agmon,Uniqueness results for solutions of differential equations in Hilbert space with applications to problems in partial differential equations. Lectures in differential equations Vol. II, A. K. Aziz General Editor, Van Nostrand Mathematical Studies, No. 19, 1969. · Zbl 0181.15503
[2] S. Agmon, Lower bounds for Schrödinger type equations, Proceedings of Tokyo International Conference on Functional Analysis and Related Topics, 1969. · Zbl 0181.15503
[3] Kato, T., Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math., 12, 403-425 (1959) · Zbl 0091.09502 · doi:10.1002/cpa.3160120302
[4] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, 1963. · Zbl 0108.09301
[5] Rellich, F., Über das asymptotische Verhalten der Lösungen von Δu+λu=0 in unendlichen Gebieten, Jber. Deutsch. Math. Verein., 53, 57-65 (1943) · Zbl 0028.16401
[6] Simon, B., On positive eigenvalues of one-body Schrödinger operators, Comm. Pure Appl. Math., 22, 531-538 (1969) · Zbl 0167.11003 · doi:10.1002/cpa.3160220405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.