Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhängigen Variablen. (German) Zbl 0211.40803


35L10 Second-order hyperbolic equations
Full Text: DOI


[1] The Cauchy Problem: enthalten in Graviation an introduction to current research, New York 1962.
[2] Courant, Methods of mathematical physics 2 (1962) · Zbl 0849.01022
[3] und , Exact solutions of the gravitational field equation, enthalten in Gravitation an introduction to current research, New York 1962.
[4] Theorie von Raum, Zeit und Gravitation; Berlin 1960.
[5] Günther, der Sächs. Akademie d. Wiss. zu Leipzig, Math.-Nat. Klasse 100 (1952)
[6] Günther, d. Sächs. Akad. d. Wiss. zu Leipzig 102 (1957)
[7] Huygenssche Differentialgleichungen, die zur Wellengleichung infinitesimal benachbart sind; Arch. d. Math. XVI (1965). · Zbl 0149.05901
[8] Günther, Mech. and Analysis 18 pp 103– (1965)
[9] Lectures on Cauchy’s problem in linear partial differential equation; New Haven 1923.
[10] McLenaghan, Cambridge Philos. Soc. 65 pp 139– (1969)
[11] Mathisson, Hadamard relatif a la diffusion des ondes; Acta Math. 71 pp 249– (1939) · JFM 65.0440.04
[12] Einstein – Räume; Berlin 1964 (Übers. aus dem Russischen).
[13] Introduction to gravitational radiation theory; enthalten in Lectures on general relativity, Brandeis summer Institute in theoretical physics (Prentice-Hall; Englewood , 1965).
[14] Riemannsche Geometrie und Tensoranalaysis; Berlin 1959.
[15] Ricci-Calculus, Berlin-Göttingen-Heidelberg 1954.
[16] Sobolew, Mat. Sb. (N. S.) 1 pp 39– (1936)
[17] Ein Beispiel einer huygensschen Differentialgleichung; Göttinger Nachr., 1953, H. 10.
[18] Über huygenssche Differentialgleichungen, die zur Wellengleichung von zweiter Ordnung infinitesimal benachbart sind; Dissertation, Leipzig 1969.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.