Osservazioni sopra una classe di disuguaglianze. (Italian) Zbl 0218.26011


26D07 Inequalities involving other types of functions
Full Text: DOI


[1] E. F. Beckenbach-R. Bellman,Inequalities (Springer-Verlag, 1965).
[2] P. R. Beesack,Integral inequalities of Wirtinger type (Duke Math. J., 25, 1948).
[3] P. R. Beesack,Hardy’s inequality and its extensions (Pacific J. of Math., XI, 1961). · Zbl 0103.03503
[4] D. C. Benson,Inequalities involving integrals of functions and their derivatives (J. Math. Anal. Appl., 17, 1967). · Zbl 0146.07404
[5] H. D. Block,A class of inequalities (Proceedings of the Amer. Math. Soc., 8, 1957). · Zbl 0081.05104
[6] W. J. Coles,Wirtinger-type integral inequalities (Pacific J. of Math., XI, 1961). · Zbl 0103.03504
[7] W. J. Coles,A general Wirtinger-type inequality (Duke Math. J., 27, 1960). · Zbl 0096.28601
[8] T. M. Flett,A note on some inequalities (Proc. Glasgow Math. Soc., 4, 1958). · Zbl 0136.04102
[9] E. K. Godunova,Diseguaglianze basate sopra funzioni convesse (in russo) (Izv. Vyss. Ucebn. Zaved Matematika, 1965).
[10] G. H. Hardy-J. E. Littlewood-G. Polya,Inequalities (Cambridge, 1964).
[11] V. I. Levin-S. B. Steckin,Inequalities (Amer. Math. Soc. Transl., 14, 1960).
[12] N. Levinson,Generalisation of an inequality of Hardy (Duke Math. J., 31, 1964).
[13] R. A. Moore-Z. Nehari,Nonoscillation theorems (Trans. Amer. Math. Soc., 93, 1959). · Zbl 0089.06902
[14] Oved Shisha,Inequalities (Proceedings of a symposium held at Wrigth-Patterson Air Force Base, Ohio, 1965).
[15] F. A. Sysoeva,Generalizzazione di una diseguaglianza di Hardy (in russo) (Izv. Vyss. Ucebn. Zaved Matematika, 1965).
[16] G. Talenti,Una diseguaglianza integrale (Boll. U.M.I., XXI, 1966).
[17] G. Talenti,Sopra una diseguaglianza integrale (Ann. Scuola Norm. Sup. Pisa, XXI, 1967). · Zbl 0158.05301
[18] G. Tomaselli,A class of inequalities (in corso di stampa sul Boll. U.M.I.). · Zbl 0188.12103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.