Stabilization of Cowell’s method. (English) Zbl 0219.65062


65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
Full Text: DOI EuDML


[1] Brouwer, D., andG. M. Clemence: Methods of celestial mechanics, Chap. IV,12 New York: Academic Press 1961. · Zbl 0132.23506
[2] Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math.3, 381–397 (1961). · Zbl 0163.39002 · doi:10.1007/BF01386037
[3] Interpolation and Allied Tables. London: Her Majesty’s Stationery Office 1956.
[4] Kustaanheimo, P., andE. Stiefel: Perturbation theory of Kepler motion based on spinor regularization. Journal für die reine und angewandte Mathematik218, 204–219 (1965) · Zbl 0151.34901 · doi:10.1515/crll.1965.218.204
[5] Salzer, H. E.: Trigonometric interpolation and predictor-corrector formulas for numerical integration. Zeitschrift für Angewandte Mathematik und Mechanik42, 403–412 (1962). · Zbl 0111.13002 · doi:10.1002/zamm.19620420906
[6] Stiefel, E., M. Rossler, J. Waldvogel, andC. A. Burdet: Methods of regularization for computing orbits in celestial mechanics. NASA Contractor Report, NASA CR-769 (1967). · Zbl 0178.27602
[7] Szebehely, V.: Theory of orbits, the restricted problem of three bodies, Chap. III and X, 2.5. New York: Academic Press 1967.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.