Saito, Kyoji Quasihomogeneous isolated singularities of hyperplanes. (Quasihomogene isolierte Singularitäten von Hyperflächen.) (German) Zbl 0224.32011 Invent. Math. 14, 123-142 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 18 ReviewsCited in 180 Documents MSC: 32S05 Local complex singularities 32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects) 14H20 Singularities of curves, local rings 14J17 Singularities of surfaces or higher-dimensional varieties PDFBibTeX XMLCite \textit{K. Saito}, Invent. Math. 14, 123--142 (1971; Zbl 0224.32011) Full Text: DOI EuDML References: [1] Artin, M.: On the solution of analytic equations. Inventiones math.5, 277-291 (1968). · Zbl 0172.05301 · doi:10.1007/BF01389777 [2] Brieskorn, E.: Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscripta mathematica2, 103-161 (1970). · Zbl 0186.26101 · doi:10.1007/BF01155695 [3] ?: Beispiele zur Differentialtopologie von Singularitäten. Inventiones math.2, 1-14 (1966). · Zbl 0145.17804 · doi:10.1007/BF01403388 [4] Milnor, J., Orlik, P.: Isolated singularities defined by weighted homogeneous polynomials. Topology9, 385-393 (1970). · Zbl 0204.56503 · doi:10.1016/0040-9383(70)90061-3 [5] Reiffen, H.-J.: Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen. Math. Zeitschrift101, 269-284 (1967). · Zbl 0164.09401 · doi:10.1007/BF01115106 [6] ?: Kontrahierbare eindimensionale Hyperflächen. Nachrichten der Akademie der Wissenschaften in Göttingen. II. Math. Phys. Klasse,3, 39-46 (1968). · Zbl 0164.09403 [7] Rossi, H.: Vector fields on analytic spaces. Ann. of Math. (2)78, 455-467 (1963). · Zbl 0129.29701 · doi:10.2307/1970536 [8] Sebastiani, M.: Preuve d’une conjecture de Brieskorn. Manuscripta mathematica2, 301-308 (1970). · Zbl 0194.11402 · doi:10.1007/BF01168382 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.