×

Limits of holomorphic discrete series. (English) Zbl 0226.22010


MSC:

22E46 Semisimple Lie groups and their representations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bargmann, V., Irreducible unitary representations of the Lorentz group, Ann. of Math., 48, 568-640 (1947) · Zbl 0045.38801
[2] Bourbaki, N., Éléments de mathématique: Intégration (1963), Hermann: Hermann Paris, Livre VI · Zbl 0156.03204
[3] Harish-Chandra, Representations of semisimple Lie groups V, (Proc. Nat. Acad. Sci., 40 (1954)), 1076-1077 · Zbl 0056.25901
[4] Harish-Chandra, Representations of a semisimple Lie group on a Banach space I, Trans. Amer. Math. Soc., 75, 185-243 (1953) · Zbl 0051.34002
[5] Harish-Chandra, Representations of semisimple Lie groups IV, Amer. J. Math., 77, 743-777 (1955) · Zbl 0066.35603
[6] Harish-Chandra, Representations of semisimple Lie groups V, Amer. J. Math., 78, 1-41 (1956) · Zbl 0070.11602
[7] Harish-Chandra, Representations of semisimple Lie groups VI, Amer. J. Math., 78, 564-628 (1956) · Zbl 0072.01702
[8] Harish-Chandra, Fourier transforms on a semisimple Lie algebra I, Amer. J. Math., 79, 193-257 (1957) · Zbl 0077.25205
[9] Helgason, S., Differential Geometry and Symmetric Spaces (1962), Academic Press: Academic Press New York · Zbl 0122.39901
[10] Knapp, A. W.; Stein, E. M., Singular integrals and the principal series II, (Proc. Nat. Acad. Sci., 66 (1970)), 13-17 · Zbl 0201.14702
[11] Loos, O., (Symmetric Spaces, vol. II (1969), Benjamin: Benjamin New York) · Zbl 0149.41004
[12] Mackey, G. W., Induced representations of locally compact groups I, Ann. of Math., 55, 101-139 (1952) · Zbl 0046.11601
[13] Moore, C. C., Compactifications of symmetric spaces, Amer. J. Math., 86, 201-218 (1964) · Zbl 0156.03202
[14] Moore, C. C., Compactifications of symmetric spaces II, Amer. J. Math., 86, 358-378 (1964) · Zbl 0156.03202
[15] Narasimhan, M. S.; Okamoto, K., An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact type, Ann. of Math., 91, 486-511 (1970) · Zbl 0257.22013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.