Smorodinsky, Meir A partition on a Bernoulli shift which is not weakly Bernoulli. (English) Zbl 0226.60066 Math. Syst. Theory 5, 201-203 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 13 Documents MSC: 60G15 Gaussian processes 60G10 Stationary stochastic processes × Cite Format Result Cite Review PDF Full Text: DOI References: [1] J. L. Doob,Stochastic Processes, Wiley, New York, 1953. [2] J. Feldman andM. Smorodinsky, Bernoulli flows with infinite entropy (to appear). · Zbl 0221.60038 [3] N. A. Friedman andD. S. Ornstein, On isomorphism of weak Bernoulli transformation,Advances in Math. 5 (1970), 365–394. · Zbl 0203.05801 · doi:10.1016/0001-8708(70)90010-1 [4] D. S. Ornstein, Bernoulli shifts with the same entropy are isomorphic,Advances in Math. 4 (1970), 337–352. · Zbl 0197.33502 · doi:10.1016/0001-8708(70)90029-0 [5] D. S. Ornstein, Factors of Bernoulli shifts are Bernoulli shifts,Advances in Math. 5 (1970), 349–364. · Zbl 0227.28015 · doi:10.1016/0001-8708(70)90009-5 [6] D. S. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic,Advances in Math. 5 (1970), 339–348. · Zbl 0227.28014 · doi:10.1016/0001-8708(70)90008-3 [7] M. Smorodinsky, On Ornstein’s isomorphism theorem for Bernoulli shifts (to appear). · Zbl 0238.28010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.