Holomorphic discrete series for the real symplectic group. (English) Zbl 0236.22013


22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
Full Text: DOI EuDML


[1] Bochner, S.: Bessel functions and modular relations of higher type and hyperbolic differential equations. Com. Sem. Math. de l’Univ. de Lund 12-20 (1952). · Zbl 0047.35002
[2] Boerner, H.: Representations of groups. Amsterdam: North-Holland Publishing Co. 1963. · Zbl 0112.26301
[3] Gelbart, S.: Stiefel manifold harmonics and generalized Hankel transforms. Bulletin of the A.M.S.78, 451-455 (1972) see also ?A theory of Stiefel harmonics?, to appear. · Zbl 0235.43012 · doi:10.1090/S0002-9904-1972-12941-0
[4] Godement, R.: Seminaire Cartan: Functions automorphes, Institut Poincaré. Paris: Secrétariat mathématique 1958.
[5] Gross, K., Kunze, R.: Fourier Bessel transforms and holomorphic discrete series. In: Proceedings of the Maryland Conference on Harmonic Analysis. Notes in Mathematics.266. Berlin-Heidelberg-New York: Springer 1972. · Zbl 0242.22015
[6] Harish-Chandra, .: Representations of semi-simple Lie groups, IV, V, VI. Amer. J. of Math. 77-78 (1955-1956).
[7] Knapp, A. W., Okamoto, K.: Limits of holomorphic discrete series. J. of Functional Analysis9, 375-409 (1972). · Zbl 0226.22010 · doi:10.1016/0022-1236(72)90017-1
[8] Saito, M.: Representations unitaires des groupes symplectiques. C. R. Acad. Sc. Paris267, 500-503 (1968). · Zbl 0164.34103
[9] Shalika, J.: Representations of the two-by-two unimodular group over local fields. Seminar on Lie group representations, mimeographed notes, Princeton 1966.
[10] Tanaka, S.: On irreducible unitary representations of some special linear groups of the second order, I. Osaka J. Math.3, 217-227 (1966). · Zbl 0145.38805
[11] Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta. Math.111, 143-211 (1964). · Zbl 0203.03305 · doi:10.1007/BF02391012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.