Arscott, F. M. The Whittaker-Hill equation and the wave equation in paraboloidal co-ordinates. (English) Zbl 0237.34042 Proc. R. Soc. Edinb., Sect. A 67, 265-276 (1967). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 2 Documents MSC: 34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.) 34A30 Linear ordinary differential equations and systems 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation PDF BibTeX XML Cite \textit{F. M. Arscott}, Proc. R. Soc. Edinb., Sect. A, Math. 67, 265--276 (1967; Zbl 0237.34042) Digital Library of Mathematical Functions: §28.31(ii) Equation of Ince; Ince Polynomials ‣ §28.31 Equations of Whittaker–Hill and Ince ‣ Hill’s Equation ‣ Chapter 28 Mathieu Functions and Hill’s Equation §28.31(ii) Equation of Ince; Ince Polynomials ‣ §28.31 Equations of Whittaker–Hill and Ince ‣ Hill’s Equation ‣ Chapter 28 Mathieu Functions and Hill’s Equation §28.31(i) Whittaker–Hill Equation ‣ §28.31 Equations of Whittaker–Hill and Ince ‣ Hill’s Equation ‣ Chapter 28 Mathieu Functions and Hill’s Equation §28.32(ii) Paraboloidal Coordinates ‣ §28.32 Mathematical Applications ‣ Applications ‣ Chapter 28 Mathieu Functions and Hill’s Equation