Wiener’s test and Markov chains. (English) Zbl 0238.60044


60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60F20 Zero-one laws
60J45 Probabilistic potential theory
Full Text: DOI


[1] Ito, K.; McKean, H. P., Potentials and the random walk, Illinois J. Math., 4, 119-132 (1960) · Zbl 0238.60047
[2] Chung, K. L.; Erdös, P., On the applicability of the Borel-Cantelli lemma, Trans. Am. Math. Soc., 72, 179-186 (1952) · Zbl 0046.35203
[3] Erdös, P.; Renyi, A., On Cantor’s series with convergent \(∑ 1q\), Ann. Univ. Sci. Budapest, 2, 93-109 (1959) · Zbl 0095.26501
[4] Kochen, S. B., and Stone, C.; Kochen, S. B., and Stone, C.
[5] Hunt, G. A., Markov processes and potentials III, Illinois J. Math., 2, 151-213 (1958) · Zbl 0100.13804
[6] Doob, J. L., Discrete potential theory and boundaries, J. Math. and Mech., 8, 433-458 (1959) · Zbl 0101.11503
[7] Hewitt, E.; Savage, L. J., Symmetric measures on Cartesian products, Trans. Am. Math. Soc., 80, 470-501 (1955) · Zbl 0066.29604
[8] Erdös, P.; Taylor, S. J., Some intersection properties of random walk paths, Acta Math. (Budapest), 11, 231-248 (1960) · Zbl 0096.33302
[9] Doob, J. L., Semimartingales and subharmonic functions, Trans. Am. Math. Soc., 77, 86-121 (1954) · Zbl 0059.12205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.