Strongly mixing g-measures. (English) Zbl 0241.28014


28D05 Measure-preserving transformations
Full Text: DOI EuDML


[1] Ionescu-Tulcea, C. T.: On a class of operators occurring in the theory of chains of infinite order. Canad. J. Math.11, 112-121 (1969). · Zbl 0086.12001 · doi:10.4153/CJM-1959-015-2
[2] Kakutani, S.: Ergodic theory of shift transformations. Proc. V. Berk. Sym.11, 405-414 (1967). · Zbl 0217.38004
[3] Karlin, S.: Some random walks arising in learning models I. Pac. J. Math.3, 725-756 (1953). · Zbl 0051.10603
[4] Keane, M.: Generalized Morse sequences. Z. Wahrscheinlichkeistheorie verw. Geb.10, 335-353 (1968). · Zbl 0162.07201 · doi:10.1007/BF00531855
[5] Norman, M. F.: Some convergence theorems for stochastic learning models with distance diminishing operators. Journal of Math. Psych.5, 61-101 (1968). · Zbl 0155.29303 · doi:10.1016/0022-2496(68)90058-8
[6] Norman, M. F.: A uniform ergodic theorem for certain Markov operators on Lipschitz functions on bounded metric spaces. Z. Wahrscheinlichkeitstheorie verw. Geb.15, 51-66 (1970). · Zbl 0191.46802 · doi:10.1007/BF01041974
[7] Mandrekar, V., Nadkarni, M.: On ergodic quasi-invariant measures on the circle group. J. Funct. Anal.3, 157-163 (1969). · Zbl 0174.31203 · doi:10.1016/0022-1236(69)90037-8
[8] Zygmund, A.: Trigonometric series I, 208ff. Cambridge: University Press 1968.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.