Schaefer, Helmut H. Normed tensor products of Banach lattices. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II. (English) Zbl 0252.46095 Isr. J. Math. 13, 400-415 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 15 Documents MSC: 46M05 Tensor products in functional analysis 06F25 Ordered rings, algebras, modules 46A40 Ordered topological linear spaces, vector lattices 46B03 Isomorphic theory (including renorming) of Banach spaces × Cite Format Result Cite Review PDF Full Text: DOI References: [1] A. Grothendieck,Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc.16 (1955). · Zbl 0123.30301 [2] U. Krengel,Remark on the modulus of compact operators, Bull. Amer. Math. Soc.72 (1966), 132–133. · Zbl 0135.36302 · doi:10.1090/S0002-9904-1966-11452-0 [3] A. L. Peressini and D. R. Sherbert,Ordered topological tensor products, Proc. London Math. Soc., (3)19 (1969), 177–190. · Zbl 0167.42201 · doi:10.1112/plms/s3-19.1.177 [4] R. R. Phelps and A. Hulanicki,Some applications of tensor products of partially ordered linear spaces,2 (1968), 177–201. · Zbl 0159.41504 [5] N. Popa,Produits tensoriels ordonnés, Rev. Roumaine Math. Pures Appl.13 (1968), 235–246. · Zbl 0159.17604 [6] R. Schatten,Norm Ideals of Completely Continuous operators, Erg. d. Math., Springer Verlag, Berlin-Heidelberg, 1960. · Zbl 0090.09402 [7] H. H. Schaefer,Topological Vector Spaces, third print., Springer Verlag, Berlin-Heidelberg-New York 1971. · Zbl 0212.14001 [8] H. H. Schaefer,Reticoli di Hilbert ed operatori Hilbert-Schmidt, Boll. Un. Math. Ital. (to appear). [9] H. H. Schaefer,Banach Lattices and Positive Operators, Grundl. d. Math. Wiss., Springer Verlag, Berlin-Heidelberg-New York (to appear). · Zbl 0296.47023 [10] U. Schlotterbeck,Ueber Klassen majorisierbarer Operatorenin Banachverbänden. Rev. Acad. Ci. Zaragoza,XXVI (1971) 585–614. [11] U. Schlotterbeck and R. Nagel,Integraldarstellung reguläre, Operatoren auf Banachverbänden, Math. Z. (to appear). · Zbl 0227.47020 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.