×

On factors of C(\([0,1]\)) with non-separable dual. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II. (English) Zbl 0253.46048


MSC:

46E15 Banach spaces of continuous, differentiable or analytic functions
46B10 Duality and reflexivity in normed linear and Banach spaces
Full Text: DOI

References:

[1] J. Dugundji,An extension of Tietze’s theorem, Pacific J. Math.1 (1951), 353–367. · Zbl 0043.38105 · doi:10.2140/pjm.1951.1.353
[2] J. Hagler,Some more Banach spaces which contain l 1, to appear, Studia Math. · Zbl 0251.46023
[3] J. Hagler and C. Stegall,Banach spaces whose duals contain complemented subspaces isomorphic to C [0, 1]*, preprint.
[4] W. B. Johnson and H. P. Rosenthal,On w *-basic sequences and their applications to the study of Banach spaces, Studia Math.43 (1972), 77–92. · Zbl 0213.39301
[5] J. Lindenstrauss and A. Pelcynski,Contributions to the theory of the classical Banach spaces, J. Functional Analysis8 (1971), 225–249. · Zbl 0224.46041 · doi:10.1016/0022-1236(71)90011-5
[6] A. A. Milutin,Isomorphism of spaces of continuous functions on compacts of the power continuum, Teor. Funkcional. Anal. i Prilozen.2 (1966), 150–156 (Russian).
[7] A. Pelczynski,Linear extensions, linear averagings and their application to linear topological classification of spaces of continuous functions, Rozprawy Matematyczne58 (1968).
[8] A. Pelczynski,On Banach space containing L 1({\(\mu\)}), Studia Math.30 (1968), 231–246.
[9] A. Pelczynski,On C(S)-subspaces of separable Banach spaces, Studia Math.31 (1968), 513–522. · Zbl 0169.15402
[10] A. Pelczynski,Projections in certain Banach spaces, Studia Math.19 (1960), 209–228. · Zbl 0104.08503
[11] H. P. Rosenthal,On injective Banach spaces and the spaces L {\(\mu\)})for finite measures {\(\mu\)}, Acta Math.124 (1970), 205–248. · Zbl 0207.42803 · doi:10.1007/BF02394572
[12] C. Stegall,Banach space whose duals contain l 1({\(\Lambda\)})with applications to the study of dual L 1({\(\mu\)})spaces, submitted to Trans. Amer. Math. Soc. · Zbl 0259.46016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.