×

Hypothèse d’approximation à l’ordre \(p\) dans les espaces de Banach et approximation d’applications \(p\) absolument sommantes. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II. (French) Zbl 0257.46108


MSC:

46M05 Tensor products in functional analysis
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47L10 Algebras of operators on Banach spaces and other topological linear spaces
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)

Citations:

Zbl 1219.46002
Full Text: DOI

References:

[1] J. Amemiya and S. Koji,On tensor products of Banach spaces, Kodai Math. Sem. Rep.9 (1957), 7, 161–176. · Zbl 0079.32404 · doi:10.2996/kmj/1138843934
[2] N. Bourbaki,espaces vectoriels topologiques, Hermann, 1966. · Zbl 0145.37702
[3] N. Dunford and J. Schwarts,Linear operators 1958.
[4] A. Grothendieck,Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. Paulo8 (1956), 1–79. · Zbl 0074.32303
[5] A. Grothendieck,Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. (1955). · Zbl 0123.30301
[6] J. R. Holub,Integral operators in Banach spaces, Proc. Amer. Math. Soc.29 (1971), 75–80. · Zbl 0216.41902 · doi:10.1090/S0002-9939-1971-0293445-6
[7] A. Persson,On some properties of p nuclear and p integral operators Studia Math.33 (1969), 213–222. · Zbl 0184.17903
[8] A. Pietsch,Absolute p summierende Abbildungen in nomierten Raumen, Studia Math.28 (1967), 333–353. · Zbl 0156.37903
[9] A. Pietsch and A. Persson,p. nuklear un p integral Abbildungen in Banachraumen, Studia Math.33 (1969), 19–62.
[10] P. Saphar,Applications à puissance nucléaire et applications de Hilbert-Schmidt dans les espaces de Banach, Ann. Sci. Ecole Norm. Sup.83 (1966), 113–152. · Zbl 0185.38001
[11] P. Saphar,Produits tensoriels d’espaces de Banach et classes d’applications linéaires Studia Math.38 (1970), 70–100. · Zbl 0213.14201
[12] S. Simons and T. J. Leih,Splitting quas norms and metric approximation properties, to appear. · Zbl 0235.47011
[13] W. B. Johnson, H. P. Rosenthal and M. ZippinOn bases, finite dimensional decompositions and weak structures in Banach spaces, Israel J. Math.9 (1971), 488–506. · Zbl 0217.16103 · doi:10.1007/BF02771464
[14] Y. Gordon, D. R. Lewis and J. R. Retherford,Banach ideals of operators with applications to the finite dimensional structure of Banach spaces, Israel J. Math.,12 (1972), 348–360. · Zbl 0253.46060 · doi:10.1007/BF02762810
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.