Exact penalty functions in nonlinear programming. (English) Zbl 0267.90079


90C30 Nonlinear programming


Full Text: DOI


[1] M. Bellmore, H.J. Greenberg and J.J. Jarvis, ”Generalized penalty-function concepts in mathematical optimization,”Operations Research 18 (1970) 2. · Zbl 0279.90034 · doi:10.1287/opre.18.2.229
[2] D.L. Berman, ”Minimizing a function without calculating derivatives,”Journal of The Association for Computing Machinery 16 (1969) 2.
[3] R.P. Brent, ”Algorithms for finding zeros and extrema of functions without calculating derivatives,” Ph. D. dissertation, Department of Computer Science, Stanford University, Stanford, Calif. (February, 1971) (STAN-CS-71-198).
[4] M. Canon, C. Cullum and E. Polak, ”Constrained minimization problems in finite-dimensional spaces,”SIAM Journal of Control 4 (1966) 528–547. · Zbl 0145.34202 · doi:10.1137/0304041
[5] A.R. Conn, ”A gradient type method of locating constrained minima,” Ph. D. Thesis, University of Waterloo, Waterloo, Ont. (1971).
[6] J.P. Evans and F.J. Gould, ”Stability in nonlinear programming,”Operations Research 18 (1970) 1. · Zbl 0232.90057 · doi:10.1287/opre.18.1.1
[7] J.P. Evans and F.J. Gould, ”Stability and exponential penalty functions techniques in nonlinear programming,” Institute of Statistics Mimeo Series No. 723, University of North Carolina (November, 1970).
[8] J.P. Evans and F.J. Gould, ”On using equality constraint algorithms for inequality constrained problems,”Mathematical Programming 2 (1972) 3. · Zbl 0336.90052 · doi:10.1007/BF01584552
[9] J.E. Falk, ”Lagrange multipliers and nonlinear programming,”Journal of Mathematical Analysis and its Applications 19 (1967) 141–159. · Zbl 0154.44803 · doi:10.1016/0022-247X(67)90028-5
[10] A.V. Fiacco and G.P. McCormick,Nonlinear programming: Sequential unconstrained minimization techniques (Wiley, New York, 1968). · Zbl 0193.18805
[11] R. Fletcher, ”A class of methods for nonlinear programming with termination and convergence properties,” in:Integer and Nonlinear Programming, Ed. J. Abadie (North-Holland, Amsterdam, 1970). · Zbl 0332.90039
[12] R. Fletcher, ”An exact penalty function for nonlinear programming with inequalities,” T.P. 478 Atomic Energy Research Establishment, Harwell (February, 1972).
[13] F.J. Gould, ”A class of inside-out algorithms for general programs,”Management Science 16 (1970) 5. · Zbl 0191.48902 · doi:10.1287/mnsc.16.5.350
[14] F.J. Gould, ”Continuously differentiable exact penalty functions for nonlinear programs with tolerances,” Institute of Statistics Mimeo Series No. 744, University of North Carolina (1971).
[15] F.J. Gould, ”Nonlinear duality theorems,”Cahiers d’Etude Research Operationelle, to appear.
[16] F.J. Gould and J.W. Tolle, ”A necessary and sufficient constraint qualification,”SIAM Journal of Applied Mathematics 20 (1971) 164–171. · Zbl 0217.57501 · doi:10.1137/0120021
[17] J. Greenstadt, ”A variable metric method using no derivatives,” IBM, New York Scientific Center, Data Processing Division, Technical Report No. 320-2991 (June, 1970).
[18] F.A. Lootsma, ”Boundary properties of penalty functions for constrained minimization,” Philips Research Reports Supplements, Eindhoven (1970). · Zbl 0242.90020
[19] O. Mangasarian, ”Techniques of optimization,” Technical Report No. 124, Computer Sciences Department, The University of Wisconsin (May, 1971). · Zbl 0222.90039
[20] O.H. Merrill, ”Applications and extensions of an algorithm that computes fixed points of certain upper semi-continuous point set mappings,” Ph. D. dissertation, Department of Industrial Engineering, University of Michigan, Ann Arbor, Mich. (1972).
[21] Papaioannou and Kempthorne, ”Parallel tangents and steepest descent optimization algorithm – A computer implementation with application to partially linear models,” Aerospace Research Laboratories, ARL 70-0117 (July, 1970).
[22] T. Pietrzykowski, ”An exact potential method for constrained maxima,”SIAM Journal of Numerical Analysis 6 (1969) 2. · Zbl 0181.46501 · doi:10.1137/0706028
[23] M.J.D. Powell, ”An efficient method for finding the minimum of a function of several variables without calculating derivatives,”The Computer Journal 7 (1964). · Zbl 0132.11702
[24] M.J.D. Powell, ”A method for nonlinear constraints in minimization problems,” in:Optimization, Ed. R. Fletcher (Academic Press, New York, 1969). · Zbl 0194.47701
[25] M.J.D. Powell, ”Recent advances in unconstrained optimization,” T.P. 430, Mathematics Branch, Atomic Energy Research Establishment, Harwell (November, 1970). · Zbl 0228.90042
[26] M.J.D. Powell, ”Unconstrained minimization algorithms without computation of derivatives,” Report HL72/1713, TP483, Theoretic Physics Division, Atomic Energy Research Establishment, Harwell (April, 1972). · Zbl 0324.65030
[27] R.T. Rockafellar, ”New applications of duality in nonlinear programming,” Seventh international symposium on mathematical programming, The Hague (September, 1970).
[28] J.D. Roode, ”Generalized Lagrangian functions in mathematical programming,” Thesis, Leiden. · Zbl 0212.23904
[29] D.A. Sprecher,Elements of real analysis (Academic Press, New York, 1970). · Zbl 0217.09001
[30] W.I. Zangwill, ”Minimizing a function without calculating derivatives,”The Computer Journal 10 (1967) 3. · Zbl 0189.48004 · doi:10.1093/comjnl/10.3.293
[31] W.I. Zangwill, ”Nonlinear programming via penalty functions,”Management Science 13 (1967) 5. · Zbl 0171.18202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.