×

On evolution equations with finite propagation speed. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces I. (English) Zbl 0271.35003


MSC:

35G10 Initial value problems for linear higher-order PDEs
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35R20 Operator partial differential equations (= PDEs on finite-dimensional spaces for abstract space valued functions)
Full Text: DOI

References:

[1] Gårding, L., Linear hyperbolic partial differential equations with constant coefficients, Acta Math., 85, 1-62 (1951) · Zbl 0045.20202 · doi:10.1007/BF02395740
[2] L. Hörmander,Pseudo-differential operators and hypoelliptic equations, Proc. Symposium in Singular Integral Operators, Amer. Math. Soc. pp. 138-183. · Zbl 0167.09603
[3] Lax, P. D.; Nirenberg, L., On stability for difference schemes; a sharp form of Gårding’s inequality, Comm. Pure Appl. Math., 19, 473-492 (1966) · Zbl 0185.22801 · doi:10.1002/cpa.3160190409
[4] Mizohata, S., Some remarks on the Cauchy problem, J. of Math., Kyoto Univ., 1, 109-127 (1961) · Zbl 0104.31903
[5] Mizohata, S., On the evolution equations with finite propagation speed, Proc. Japan Acad., 46, 258-261 (1970) · Zbl 0206.40201 · doi:10.3792/pja/1195520404
[6] L. Schwartz,Théorie des DistributionsI.II., 1950-1951.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.