×

Approximation based on nonscalar observations. (English) Zbl 0272.41006


MSC:

41A15 Spline approximation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahlberg, J. H.; Nilson, E. N.; Walsh, J. L., Best approximation and convergence properties of higher-order spline approximations, J. Math. Mech., 15, 231-243 (1965) · Zbl 0141.06801
[2] Ahlberg, J. H.; Nilson, E. N., The approximation of linear functionals, SIAM J. Numer. Anal., 3, 173-182 (1966) · Zbl 0147.05102
[3] de Boor, C. R., Best approximation properties of spline functions of odd degree, J. Math. Mech., 12, 747-749 (1963) · Zbl 0116.27601
[4] de Boor, C. R.; Lynch, R. E., On splines and their minimum properties, J. Math. Mech., 15, 953-969 (1966) · Zbl 0185.20501
[5] Golomb, M.; Weinberger, H. F., Optimal approximation and error bounds, (Langer, R. E., On Numerical Approximation (1959), University of Wisconsin Press: University of Wisconsin Press Madison, WI), 117-190 · Zbl 0092.05802
[6] Holladay, J. C., A smoothest curve approximation, Math. Tables Aids Computation, 11, 233-243 (1957) · Zbl 0084.34904
[7] Sard, A., Integral representations of remainders, Duke Math. J., 15, 333-345 (1948) · Zbl 0041.44405
[8] Sard, A., Best approximate integration formulas; best approximation formulas, Amer. J. Math., 71, 80-91 (1949) · Zbl 0039.34104
[9] Sard, A., Linear Approximation (1963), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0115.05403
[10] Sard, A., Uses of Hilbert space in approximation, (Garabedian, H. L., Approximation of Functions (1965), Elsevier: Elsevier Amsterdam/New York), 17-26 · Zbl 0154.14902
[11] Sard, A., Optimal approximation, J. Functional Analysis, 2, 368-369 (1968) · Zbl 0159.43801
[12] Sard, A.; Weintraub, S., (A Book of Splines (1971), Wiley: Wiley New York) · Zbl 0232.65003
[13] Schoenberg, I. J., Contributions to the problem of approximation of equidistant data by analytic functions. Part A—On the problem of smoothing or graduation. A first class of analytic approximation formulae, Quart. Appl. Math., 4, 45-99 (1946) · Zbl 0061.28804
[14] Schoenberg, I. J., Spline interpolation and the higher derivatives, (Proc. Nat. Acad. Sci. U. S. A., 51 (1964)), 24-28 · Zbl 0136.36201
[15] Schoenberg, I. J., Spline interpolation and best quadrature formulae, Bull. Amer. Math. Soc., 70, 143-148 (1964) · Zbl 0136.36202
[16] Schoenberg, I. J., On interpolation by spline functions and its minimal properties, (Butzer, P. L.; Korevaar, J., On Approximation Theory. Proceedings of the Conference. On Approximation Theory. Proceedings of the Conference, Oberwolfach, 1963 (1964), Birkhäuser: Birkhäuser Basel), 109-129 · Zbl 0147.32101
[17] Schoenberg, I. J., On best approximations of linear operators, Indag. Math., 26, 155-163 (1964) · Zbl 0146.08501
[18] Schoenberg, I. J., Spline interpolation and the higher derivatives, (Turán, P., Abhandlungen aus Zahlentheorie und Analysis, zur Erinnerung an Edmund Landau (1968), Deutscher Verlag der Wissenschaften: Deutscher Verlag der Wissenschaften Berlin), 281-295 · Zbl 0084.27901
[19] Secrest, D., Best approximate integration formulas and best error bounds, Math. Comput., 19, 79-83 (1965) · Zbl 0134.13606
[20] Secrest, D., Numerical integration of arbitrarily spaced data and estimation of errors, SIAM J. Numer. Anal., 2, 52-68 (1965) · Zbl 0135.38601
[21] Secrest, D., Error bounds for interpolation and differentiation by the use of spline functions, SIAM J. Numer. Anal., 2, 440-447 (1965) · Zbl 0143.38804
[22] Walsh, J. L.; Ahlberg, J. H.; Nilson, E. N., Best approximation properties of the spline fit, J. Math. Mech., 11, 225-234 (1962) · Zbl 0196.48603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.