Wada, Hideo A table of Hecke operators. II. (English) Zbl 0273.10019 Proc. Japan Acad. 49, 380-384 (1973). reducible factors) for (1) \(0<cq<250\), \(q \ne 227, 239\), (2) \(0<p<1000\), \(p\ne q\) and in this paper there is a list of \(F_{2,q}(x)\) and \(F_{3,q}\)(x). Let \(S'(q)\) be the set of cusp forms \(f(z)\) such that \[ f\left(\frac{az + b}{cz+d}\right) = \left(\frac{a}{q}\right)(cz+d)^2 f(z),\quad \left(\frac{a}{q}\right) = \text{ Legendre symbol},\quad \begin{pmatrix} a & b \\ c & d\end{pmatrix} \in\Gamma_0(q). \] In another paper [Tables of Hecke operators. I, Semin. Modern Methods Number Theory, Inst. Stat. Math., Tokyo 1971, 10 p. (1971; Zbl 0307.10029)], the author made a small table of Hecke operators \(T(p)\) which operate on \(S'(q)\). Reviewer: Hideo Wada Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 9 Documents MSC: 11F25 Hecke-Petersson operators, differential operators (one variable) 11F12 Automorphic forms, one variable Keywords:cusp forms; Hecke operators; table Citations:Zbl 0307.10029 PDF BibTeX XML Cite \textit{H. Wada}, Proc. Japan Acad. 49, 380--384 (1973; Zbl 0273.10019) Full Text: DOI References: [1] H. Wada: A Table of Hecke Operators. I. United States-Japan Seminar on Modern Methods in Number Theory, pp. 1-10 (1971). Tokyo University. · Zbl 0307.10029 [2] H. Wada: On a Method of Calculations of Hecke Operators (in Japanese). Surikaiseki Kenkyujo Kokyuroku, No. 155, pp. 3-13. [3] H. G. Zimmer: Computational Problems, Methods, and Results in Algebraic Number Theory. Lecture Notes in Math. Vol. 262, Springer (1972). · Zbl 0231.12001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.