Rieffel, Marc A. Induced representations of C\(^*\)-algebras. (English) Zbl 0284.46040 Adv. Math. 13, 176-257 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 15 ReviewsCited in 249 Documents MSC: 46L05 General theory of \(C^*\)-algebras 46M15 Categories, functors in functional analysis 22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations 22D30 Induced representations for locally compact groups PDF BibTeX XML Cite \textit{M. A. Rieffel}, Adv. Math. 13, 176--257 (1974; Zbl 0284.46040) Full Text: DOI OpenURL References: [1] Bass, H, Algebraic K-theory, (1968), W.A. Benjamin New York · Zbl 0174.30302 [2] Blattner, R.J, On induced representations, Amer. J. math., 83, 79-98, (1961) · Zbl 0122.28405 [3] Blattner, R.J, On a theorem of G. W. MacKey, Bull. amer. math. soc., 68, 585-587, (1962) · Zbl 0122.35202 [4] Blattner, R.J, Positive definite measures, (), 423-428 · Zbl 0135.36202 [5] Bourbaki, N, Topologie Générale, chap. 9, () · Zbl 0085.37103 [6] Bourbaki, N, Intégration, chaps. 7 et 8, () · Zbl 0156.03204 [7] Bruhat, F, Sur LES représentations induites des groupes de Lie, Bull. soc. math. France, 84, 97-205, (1956) · Zbl 0074.10303 [8] Busby, R.C, Double contralizers and extensions of C∗-algebras, Trans. amer. math. soc., 132, 79-99, (1968) · Zbl 0165.15501 [9] Busby, R.C; Smith, H.A, Representations of twisted group algebras, Trans. amer. math. soc., 147, 503-537, (1970) · Zbl 0201.45904 [10] {\scP.M. Cohn}, “Morita Equivalence and Duality,” Queen Mary College Mathematical Notes, London, N.D. · Zbl 0377.16015 [11] Combes, F, Poids sur une C∗-algèbres, J. math. pures appl., 47, 57-100, (1968) · Zbl 0165.15401 [12] Dixmier, J, Algèbres quasi-unitaires, Comment. math. helv., 26, 275-322, (1952) · Zbl 0047.35601 [13] Dixmier, J, LES C∗-algèbres et leurs représentations, (1964), Gauthier-Villars Paris · Zbl 0152.32902 [14] Doplicher, S; Haag, R; Roberts, J.E, Fields, observables and gauge transformations, I, Commun. math. phys., 13, 1-23, (1969) · Zbl 0175.24704 [15] Doplicher, S; Kastler, D; Størmer, E, Invariant states and asymptotic abelianness, J. funct. anal., 3, 419-434, (1969) · Zbl 0174.44604 [16] Effros, E; Hahn, F, Locally compact transformation groups and C∗-algebras, Memoirs amer. math. soc., 75, (1967) · Zbl 0166.11802 [17] Feldman, J; Greenleaf, F.P, Existence of Borel transversals in groups, Pacific J. math., 25, 455-461, (1968) · Zbl 0159.31703 [18] Fell, J.M.G, Weak containment and induced representations of groups. II, Trans. amer. math. soc., 110, 424-447, (1964) · Zbl 0195.42201 [19] Fell, J.M.G, An extension of Mackey’s method to Banach ∗-algebraic bundles, Memoirs amer. math. soc., 90, (1969) · Zbl 0194.44301 [20] Fell, J.M.G, A new look at Mackey’s imprimitivity theorem, () · Zbl 0234.43008 [21] Frobenius, G, Über relationen zwischen den characteren einer gruppe und denen ihrer untergruppen, Sitzber. preuss. akad. wiss., 501-515, (1898) · JFM 29.0102.01 [22] Gelfand, I.M; Naimark, M.A, Unitary representations of the classical groups, Trudy mat. inst. Steklov, (1950) [23] Gelfand, I.M; Naimark, M.A, Normed rings with involution and their representations, Izv. akad. nauk S.S.S.R., 12, 445-480, (1948) · Zbl 0031.03403 [24] Glimm, J, Families of induced representations, Pacific J. math., 12, 885-911, (1962) · Zbl 0121.10303 [25] Godement, R, A theory of spherical functions I, Trans. amer. math. soc., 73, 496-556, (1952) · Zbl 0049.20103 [26] Greenleaf, F.P, Invariant means on topological groups, (1969), Van Nostrand-Reinhold New York · Zbl 0174.19001 [27] Greenleaf, F.P; Moskowitz, M, Cyclic vectors for representations of locally compact groups, Math. ann., 190, 265-288, (1971) · Zbl 0223.43007 [28] Higman, D.G, Induced and produced modules, Can. J. math., 7, 490-508, (1955) · Zbl 0065.26001 [29] Johnson, B.E, An introduction to the theory of centralizers, (), 299-320 · Zbl 0143.36102 [30] Kaplansky, I, Modules over operator algebras, Trans. amer. math. soc., 75, 839-858, (1953) · Zbl 0051.09101 [31] {\scH. Leptin}, Darstellungen verallgemeinerter L1-Algebren II, to appear. · Zbl 0175.44601 [32] Levitzki, J, Über vollständig reduzible ringe und unterringe, Math. zeit., 33, 663-691, (1931) · JFM 57.0166.02 [33] Loomis, L.H, Positive definite functions and induced representations, Duke math. J., 27, 569-580, (1960) · Zbl 0095.10303 [34] Mackey, G.W, Imprimitivity for representations of locally compact groups, I, (), 537-545 · Zbl 0035.06901 [35] Mackey, G.W, On induced representations of groups, Amer. J. math., 73, 576-592, (1951) · Zbl 0045.30305 [36] Mackey, G.W, Induced representations of locally compact groups, I, Ann. math., 55, 101-139, (1952) · Zbl 0046.11601 [37] Mackey, G.W, Induced representations of locally compact groups, II, the Frobenius reciprocity theorem, Ann. math., 58, 193-221, (1953) · Zbl 0051.01901 [38] Mackey, G.W, Unitary representations of group extensions, I, Acta math., 99, 265-311, (1958) · Zbl 0082.11301 [39] Mackey, G.W, Ergodic theory and virtual groups, Math. ann., 166, 187-207, (1966) · Zbl 0178.38802 [40] Mautner, F.I, A generalization of the Frobenius reciprocity theorem, (), 431-435 · Zbl 0045.31302 [41] Mautner, F.I, Induced representations, Amer. J. math., 74, 737-758, (1952) · Zbl 0049.35701 [42] Morita, K, Duality for modules and its applications to the theory of rings with minimum condition, Tokyo kyoiku daigaku sec. A, 6, 83-142, (1958) · Zbl 0080.25702 [43] Moscovici, H, Generalized induced representations, Rev. roumaine math. pures appl., 10, 1539-1551, (1969) · Zbl 0191.42905 [44] Mueller-Roemer, P.R, A note on Mackey’s imprimitivity theorem, Bull. amer. math. soc., 77, 1089-1090, (1971) · Zbl 0227.43013 [45] Nakayama, T, A remark on representations of groups, Bull. amer. math. soc., 44, 233-235, (1938) · JFM 64.0069.02 [46] Noether, E, Hyperkomplexe grössen und darstellungstheorie, Math. zeit., 30, 641-692, (1929) · JFM 55.0677.01 [47] Ramsay, A, Ergodic groupoids and group actions, Advances in math., 6, 253-322, (1971) · Zbl 0216.14902 [48] Rickart, C.E, General theory of Banach algebras, (1960), Van Nostrand Princeton · Zbl 0084.33502 [49] Rieffel, M.A, On extensions of locally compact groups, Amer. J. math., 88, 871-880, (1966) · Zbl 0147.01203 [50] Rieffel, M.A, Burnside’s theorem for representations of Hopf algebras, J. algebra, 6, 123-130, (1967) · Zbl 0166.01202 [51] Rieffel, M.A, Induced Banach representations of Banach algebras and locally compact groups, J. funct. anal., 1, 443-491, (1967) · Zbl 0181.41303 [52] Rieffel, M.A, On the continuity of certain intertwining operators, centralizers, and positive linear functionals, (), 455-457 · Zbl 0177.41301 [53] Rieffel, M.A, Unitary representations induced from compact subgroups, Studia math., 42, 145-175, (1972) · Zbl 0213.03904 [54] Rieffel, M.A, On the uniqueness of the Heisenberg commutation relations, Duke math. J., 39, 745-752, (1972) · Zbl 0252.43017 [55] Rieffel, M.A, Induced representations of C∗-algebras, Bull. amer. math. soc., 78, 606-609, (1972) · Zbl 0256.22011 [56] {\scM. A. Rieffel}, On induced representations of rings, Canad. J. Math., to appear. [57] Segal, I.E, Irreducible representations of operator algebras, Bull. amer. math. soc., 53, 73-88, (1947) · Zbl 0031.36001 [58] Stein, E.M, Analysis in some matrix spaces and some new representations of SL(n, C), Ann. math., 86, 461-490, (1967) · Zbl 0188.45303 [59] Stinespring, W.F, positive functions on C∗-algebras, (), 211-216 · Zbl 0064.36703 [60] Størmer, E, Positive linear maps of operator algebras, Acta math., 110, 233-278, (1963) · Zbl 0173.42105 [61] Størmer, E, States and invariant maps of operator algebras, J. funct. anal., 5, 44-65, (1970) · Zbl 0186.19801 [62] Takesaki, M, Covariant representations of C∗-algebras and their locally compact automorphism groups, Acta math., 119, 273-303, (1967) · Zbl 0163.36802 [63] Takesaki, M, Conditional expectations in von Neumann algebras, J. funct. anal., 9, 306-321, (1972) · Zbl 0245.46089 [64] Tomiyama, J, On the projection of norm one in W∗-algebras, (), 608-612 · Zbl 0081.11201 [65] Weill, A, L’intégration dans LES groupes topologiques et ses applications, (), No. 869 [66] Weyl, H, Theory of groups and quantum mechanics, (1931), Princeton University Press Princeton · JFM 58.1374.01 [67] Wigner, E, On unitary representations of the inhomogeneous Lorentz group, Ann. math., 40, 149-204, (1939) · JFM 65.1129.01 [68] Zeller-Meier, G, Produits croisés d’une C∗-algèbre par un groupe d’automorphismes, J. math. pures et appl., 47, 101-239, (1968) · Zbl 0165.48403 [69] Hulanicki, A; Pytlik, T, On cyclic vectors of induced representations, (), 633-634 · Zbl 0235.22015 [70] Greenleaf, F.P; Moskowitz, M, Cyclic vectors for representations associated with positive definite measures: nonseparable groups, Pacific J. math., 45, 165-186, (1973) · Zbl 0253.22005 [71] {\scP. R. Müller-Römer}, Zum imprimitivitatssatz für verallgemeinerte L1-algebren, to appear. [72] Goodman, R, Positive definite distributions and intertwining operators, Pacific J. math., 48, 83-91, (1973) · Zbl 0273.22008 [73] Hawkins, T, Hypercomplex numbers, Lie groups, and the creation of group representation theory, Archive history exact sci., 8, 243-287, (1972) · Zbl 0255.01005 [74] Hofmann, K.H, Representation of algebras by continuous sections, Bull. amer. math. soc., 78, 291-373, (1972) · Zbl 0237.16018 [75] Molien, T, Eine bemerkung zur theorie der homogenen subsubstitutionsgruppen, S’ber naturforscher-ges. univ. jurjeff (dorpat), 11, 259-274, (1897) [76] Paschke, W.L, Inner product modules over B∗-algebras, Trans. amer. math. soc., 182, 443-468, (1973) · Zbl 0239.46062 [77] Rieffel, M.A, Induced representations and Morita theorems for C∗-algebras, Notices amer. math. soc., 19, A-777, (1972) [78] Takahashi, A, Fields of Hilbert modules, () [79] Kaplansky, I, Algebraic and analytic aspects of operator algebras, (1970), American Mathematical Society Providence, RI · Zbl 0217.44902 [80] {\scM. A. Rieffel}, Morita equivalence for C∗-algebras and W∗-algebras, J. Pure Appl. Alg., to appear. · Zbl 0295.46099 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.