×

On the validity of Huygens’ principle for second order partial differential equations with four independent variables. I: Derivation of necessary conditions. (English) Zbl 0287.35058


MSC:

35L10 Second-order hyperbolic equations
35B99 Qualitative properties of solutions to partial differential equations
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] L. Asgeirsson , Some hints on Huygens’ principle and Hadamard’s conjecture . Comm. Pure Appl. Math. , t. 9 , 1956 , p. 307 . MR 82034 | Zbl 0074.31101 · Zbl 0074.31101
[2] Y. Bruhat , Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires . Acta Math. , t. 88 , 1952 , p. 141 . MR 53338 | Zbl 0049.19201 · Zbl 0049.19201
[3] M. Cahen and R. McLenaghan , Métriques des espaces lorentziens symétriques à quatre dimensions . C. R. Acad. Sci. Paris , t. 266 , 1968 , p. 1125 . MR 231326 | Zbl 0172.27904 · Zbl 0172.27904
[4] M. Chevalier , Sur le noyau de diffusion de l’opérateur laplacien . C. R. Acad. Sci. Paris , t. 264 , 1967 , p. 380 . MR 226555
[5] E. Cotton , Sur les invariants différentiels de quelques équations linéaires aux dérivées partielles du second ordre . Ann. Sc. Ec. Norm. Supérieure , t. 17 , 1900 , p. 211 . Numdam | MR 1508982 | JFM 31.0379.02 · JFM 31.0379.02
[6] R. Courant and D. Hilbert , Methods of mathematical physics , t. 2 , Interscience , New York , 1962 . Zbl 0099.29504 · Zbl 0099.29504
[7] A. Douglis , The problem of Cauchy for linear hyperbolic equations of second order . Comm. Pure Appl. Math. , t. 7 , 1954 , p. 271 . MR 62931 | Zbl 0059.08801 · Zbl 0059.08801
[8] A. Douglis , A criterion for the validity of Huygens’ principle . Comm. Pure Appl. Math. , t. 9 , 1956 , p. 391 . MR 82035 | Zbl 0075.09701 · Zbl 0075.09701
[9] J.C. Du Plessis , Polynomial conformal tensors . Proc. Cambridge Philos. Soc. , t. 68 , 1970 , p. 329 . MR 259802 | Zbl 0203.54603 · Zbl 0203.54603
[10] F.G. Friedlander , The wave equation in a curved space-time . Cambridge University Press (to appear). MR 460898 | Zbl 0316.53021 · Zbl 0316.53021
[11] P. Günther , Zur Gültigkeit des Huygensschen Princips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus . S.-B. Sachs. Akad. Wiss. Leipzig Math.-Natur. Kl. , t. 100 , 1952 , p. 1 . MR 50136 | Zbl 0046.32201 · Zbl 0046.32201
[12] P. Günther , Uber einige spezielle Probleme aus der Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung . S.-B. Sachs. Akad. Wiss. Leipzig Math.- Natur. Kl. , t. 102 , 1957 , p. 1 . MR 109937 | Zbl 0085.08202 · Zbl 0085.08202
[13] P. Günther , Ein Beispiel einer nichttrivalen Huygensschen Differentialgleichungen mit vier unabhängigen Variablen . Arch. Rational Mech. Anal. , t. 18 , 1965 , p. 103 . MR 174865 | Zbl 0125.05404 · Zbl 0125.05404
[14] J. Hadamard , Lectures on Cauchy’s problem in linear partial differential equations . Yale University Press , New Haven , 1923 . JFM 49.0725.04 · JFM 49.0725.04
[15] J. Hadamard , The problem of diffusion of waves . Ann. of Math. , t. 43 , 1942 , p. 510 . MR 6809 | Zbl 0063.01841 · Zbl 0063.01841
[16] S. Helgason , Lie Groups and Symmetric Spaces . Article in Batelle Recontres 1967 , lectures in mathematics and physics . W. A. Benjamin, Inc. , New York , 1968 . MR 236325 | Zbl 0177.50601 · Zbl 0177.50601
[17] G. Herglotz , Uber die Bestimmung eines Linienelementes in normal Koorinaten aus dem Riemannschen Krümmgstensor . Math. Ann. , t. 93 , 1925 , p. 46 . MR 1512221 | JFM 50.0492.07 · JFM 50.0492.07
[18] J. Leray , Hyperbolic Partial Differential Equations . Mimeographed Notes , Institute of Advanced Study , Princeton .
[19] A. Lichnerowicz , Propagateurs et commutateurs en relativité générale . Publ. Math. I. H. E. S. , n^\circ 10 , 1961 , p. 293 . Numdam | MR 158726 | Zbl 0098.42607 · Zbl 0098.42607
[20] D. Lovelock , The Lanczos identity and its generalizations . Atti. Accad. Naz. Lincei , t. 42 , 1967 , p. 187 . MR 216427 | Zbl 0194.22802 · Zbl 0194.22802
[21] M. Mathisson , Eine Lösungsmethode fur Differentialgleichungen vom normalen hyperbolischen Typus . Math. Ann. , t. 107 , 1932 , p. 400 . JFM 58.1561.01 · JFM 58.1561.01
[22] M. Mathisson , Le problème de M. Hadamard relatif à la diffusion des ondes . Acta. Math. , t. 71 , 1939 , p. 249 . MR 728 | Zbl 0022.22802 · Zbl 0022.22802
[23] R.G. McLenaghan , An explicit determination of the empty space-times on which the wave equation satisfies Huygens’ principle . Proc. Cambridge Philos. Soc. , t. 65 , 1969 , p. 139 . MR 234700 | Zbl 0182.13403 · Zbl 0182.13403
[24] R. Penrose , A spinor approach to general relativity . Ann. Physics , t. 10 , 1960 , p. 171 . MR 115765 | Zbl 0091.21404 · Zbl 0091.21404
[25] A.Z. Petrov , Einstein-Räume . Akademie Verlag , Berlin , 1964 . MR 162594 | Zbl 0114.21003 · Zbl 0114.21003
[26] H.S. Ruse , A.G. Walker and T.J. Willmore , Harmonic Spaces . Edizioni Cremonese , Rome , 1961 . MR 142062 | Zbl 0134.39202 · Zbl 0134.39202
[27] J.A. Schouten , Ricci-Calculus . Springer-Verlag , Berlin , 1954 . MR 516659 | Zbl 0057.37803 · Zbl 0057.37803
[28] S.L. Sobolev , Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales . Mat. Sb. (N. S.) , t. 1 , 1936 , p. 39 . Zbl 0014.05902 | JFM 62.0568.01 · Zbl 0014.05902
[29] K.L. Stellmacher , Ein Beispiel einer Huygensschen Differentialgleichung . Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II , t. 10 , 1953 , p. 133 . MR 60695 | Zbl 0052.09901 · Zbl 0052.09901
[30] K.L. Stellmacher , Eine Klasse huygenscher Differentialgleichungen und ihre Integration . Math. Ann. , t. 130 , 1955 , p. 219 . MR 73831 | Zbl 0134.31101 · Zbl 0134.31101
[31] P. Szekeres , Conformal Tensors . Proc. Roy. Soc. London, A , t. 304 , 1968 , p. 113 . Zbl 0159.23903 · Zbl 0159.23903
[32] V. Wünsch , Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhangigen Variablen . Math. Nachr. , t. 47 , 1970 , p. 131 . MR 298221 | Zbl 0211.40803 · Zbl 0211.40803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.