×

Power-separating regular languages. (English) Zbl 0287.68045


MSC:

68Q45 Formal languages and automata
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. H. Clifford andG. B. Preston,The Algebraic Theory of Semigroups, Math. Surveys Series, Vols. 1 and 2, Amer. Math. Soc., Providence, R.I., 1961 and 1967. · Zbl 0111.03403
[2] S. Ginsburg,The Mathematical Theory of Context-Free Languages McGraw-Hill, New York, 1968.
[3] A. Ginzburg,Algebraic Theory of Automata, Assoc. Comput Mach. Monograph Series, Academic Press, New York, 1968. · Zbl 0195.02501
[4] R. McNaughton andS. Papert,Counter-free Automata, M.I.T. Press, 1971.
[5] A. R. Meyer, A note on star-free events,J. Assoc. Comput. Mach. 16 (1969), 220–225. · Zbl 0224.94060
[6] M. O. Rabin andD. Scott, Finite automata and their decision problems,IBM J. Res. Develop. 3 (1959), 114–125.
[7] M. P. Schützenberger, On finite monoids having only trivial subgroups.Information and Control 8 (1965), 190–194. · Zbl 0131.02001
[8] M. P. Schützenberger, On a family of sets related to McNaughton’s L-language, InAutomata Theory, E. R. Caianiello, (Ed.), Academic Press, New York, (1966), pp. 320–324.
[9] M. P. Schützenberger, On synchronizing prefix codes,Information and Control 11 (1967), 396–401. · Zbl 0157.25905
[10] G. Thierrin, Décomposition des Langages Réguliers, R.I.R.O. 3e annee, N{\(\deg\)} R-3, (1969), 45–50.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.