Maxwellsche Gleichungen und Huygenssches Prinzip. I. (German) Zbl 0288.35042


35L45 Initial value problems for first-order hyperbolic systems
35Q99 Partial differential equations of mathematical physics and other areas of application
Full Text: DOI


[1] Duff, Harmonic p-tensors in normal hyperbolic Riemannian spaces; Canad, Journ. Math. 5 pp 57– (1953) · Zbl 0052.32801
[2] J. Ehlers K. Kundt 1962
[3] Günther, Ein Beispiel einer nichttrivialen huygensschen Differentialgleichung mit vier unabhängigen Veränderlichen; Archive for Rat, Mech. and Analysis 18 pp 103– (1965)
[4] Günther, Einige Sätze über huygenssche Differentialgleichungen; Wiss, Z. d. Karl-Marx-Univ. Leipzig 14 pp 497– (1965)
[5] P. Günther
[6] Künzle, Maxwell fields satisfying Huygens’ principle; Proc, Cambridge, Philos. Soc. 64 pp 779– (1968)
[7] McLenaghan, An explicit determination of the empty spacetime on which the wave equation satisfies Huygens’ Principle; Proc, Cambridge Philos. Soc. 65 pp 139– (1969) · Zbl 0182.13403
[8] A. S. Petrow 1964
[9] Schimming, Zur Gültigkeit des Huygensschen Prinzips bei einer speziellen Metrik, ZAMM 51 pp 201– (1971) · Zbl 0221.35011
[10] R. Schimming
[11] J. A. Schouten 1954
[12] Wünsch, Über selbstadjungierte huygenssche Differentialgleichungen mit vier unabhängigen Variablen, diese Nachr. 47 pp 131– (1970) · Zbl 0211.40803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.