Kubokawa, Yoshihiro A local ergodic theorem for semi-group on L\(_p\). (English) Zbl 0289.47025 Tohoku Math. J., II. Ser. 26, 411-422 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 7 Documents MSC: 47D03 Groups and semigroups of linear operators 47A35 Ergodic theory of linear operators 28D05 Measure-preserving transformations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] M. AKCOGLU AND R. CHACON, A local ratio theorem, Canad. J. Math., 22 (1970), 545-552. · Zbl 0201.06603 · doi:10.4153/CJM-1970-062-2 [2] R. CHACON, An ergodic theorem for operators satisfying norm conditions, J. Math Mech., 11 (1962), 165-172. · Zbl 0115.33804 [3] R. CHACON AND D. ORNSTEIN, A general ergodic theorem, 111.J. Math., 4 (1960), 153-160 · Zbl 0134.12102 [4] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators I, Interscience, 1958 · Zbl 0084.10402 [5] U. KRENGEL, A local ergodic theorem, Inventiones Math., 6 (1969), 329-333 · Zbl 0165.37402 · doi:10.1007/BF01425423 [6] Y. KUBOKAWA, A general local ergodic theorem, Proc. Japan Acad., 48 (1972), 461-465 · Zbl 0254.47013 · doi:10.3792/pja/1195519589 [7] Y. KUBOKAWA, Ergodic theorems for contraction semi-group, to appear in J. Math. Soc. o Japan. · Zbl 0299.47007 · doi:10.2969/jmsj/02720184 [8] D. ORNSTEIN, The sum of iterates of a positive operators, Advances in Probability an Related Topics (edited by P. Ney), 2 (1970), 87-115. · Zbl 0321.28013 [9] T. TERRELL, Local ergodic theorem for ^-parameter semi-groups of operators, Lectur Notes in Math., No. 160 (1970), 262-278, Springer-Verlag. · Zbl 0204.45406 [10] S. TSURUMI, Ergodic theorems, Sugaku, 13 (1961/62), 80-88 (Japanese) · Zbl 0126.08201 [11] K. YOSIDA, Functional Analysis, Springer-Verlag, 1965 [12] R. SATO, More about the maximal ergodic lemma of Kubokawa, · Zbl 0147.34004 · doi:10.1073/pnas.57.1.21 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.