Schaefer, Helmut H. Banach lattices and positive operators. (English) Zbl 0296.47023 Die Grundlehren der mathematischen Wissenschaften. Band 215. Berlin-Heidelberg-New York: Springer-Verlag. XI, 376 p. DM 98.00; $ 40.00 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 22 ReviewsCited in 1050 Documents MathOverflow Questions: Are all positive eigenfunctions principal eigenfunctions? MSC: 47B60 Linear operators on ordered spaces 06F20 Ordered abelian groups, Riesz groups, ordered linear spaces 47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.) 15B48 Positive matrices and their generalizations; cones of matrices 15B51 Stochastic matrices 46-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to functional analysis 46A35 Summability and bases in topological vector spaces 46A40 Ordered topological linear spaces, vector lattices 46B99 Normed linear spaces and Banach spaces; Banach lattices 46E05 Lattices of continuous, differentiable or analytic functions 47-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to operator theory 47B99 Special classes of linear operators 47D03 Groups and semigroups of linear operators 47L05 Linear spaces of operators × Cite Format Result Cite Review PDF