Hypermaps versus bipartite maps. (English) Zbl 0302.05101


05C10 Planar graphs; geometric and topological aspects of graph theory
05C15 Coloring of graphs and hypergraphs
Full Text: DOI


[1] Berge, C., (Graphes et Hypergraphes (1970), Dunod: Dunod Paris) · Zbl 0213.25702
[2] Cori, R., Un code pour les graphes planaires et ses applications, Thèse de Doctorat (1973), Paris · Zbl 0313.05115
[3] Edmonds, J. R., A combinatorial representation for oriented polyhedral surfaces, (M. A. Thesis (1960), University of Maryland)
[4] Jacques, A., Constellations et propriétés algébriques des graphes topologiques, (Thèse de 3ème cycle (1969), Fac. Science: Fac. Science Paris) · Zbl 0213.25901
[5] Jacques, A., Sur le genre d’une paire de substitutions, C. R. Acad. Sci. Paris Ser. A, 267, 625-627 (1968) · Zbl 0187.20902
[6] A. Lehman; A. Lehman
[7] Penaud, J. G., De la planarité de certains hypergraphes, C. R. Acad. Sci. Paris Ser. A, 277, 931-933 (1973) · Zbl 0287.05125
[8] Tutte, W. T., A census of slicings, Canad. J. Math., 14, 708-722 (1962) · Zbl 0111.35202
[9] Walsh, T. R.; Lehman, A., Counting rooted maps by genus I, J. Combinatorial Theory, Ser. B, 13, 192-218 (1972) · Zbl 0228.05108
[10] Whittaker, E. T.; Watson, G. N., (A Course of Modern Analysis (1940), Cambridge Univ. Press: Cambridge Univ. Press London)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.