×

Ultrafilter mappings and their Dedekind cuts. (English) Zbl 0305.02065


MSC:

03C68 Other classical first-order model theory
03E05 Other combinatorial set theory
03C30 Other model constructions
03H99 Nonstandard models
03E50 Continuum hypothesis and Martin’s axiom
Full Text: DOI

References:

[1] A. Blass, Orderings of ultrafilters, Thesis, Harvard University, Cambridge, Mass., 1970.
[2] Andreas Blass, The Rudin-Keisler ordering of \?-points, Trans. Amer. Math. Soc. 179 (1973), 145 – 166. · Zbl 0269.02025
[3] David Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970/1971), no. 1, 1 – 24. · Zbl 0231.02067 · doi:10.1016/0003-4843(70)90005-7
[4] Gustave Choquet, Construction d’ultrafiltres sur N, Bull. Sci. Math. (2) 92 (1968), 41 – 48 (French). · Zbl 0157.53101
[5] Gustave Choquet, Deux classes remarquables d’ultrafiltres sur N, Bull. Sci. Math. (2) 92 (1968), 143 – 153 (French). · Zbl 0162.26201
[6] P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292 – 294. · Zbl 0032.19203
[7] P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463 – 470. · Zbl 0012.27010
[8] T. Frayne, A. C. Morel, and D. S. Scott, Reduced direct products, Fund. Math. 51 (1962/1963), 195 – 228. · Zbl 0108.00501
[9] H. Jerome Keisler, Ultraproducts and saturated models, Nederl. Akad. Wetensch. Proc. Ser. A 67 = Indag. Math. 26 (1964), 178 – 186. · Zbl 0199.01101
[10] Mary Ellen Rudin, Partial orders on the types in \?\?, Trans. Amer. Math. Soc. 155 (1971), 353 – 362. · Zbl 0212.54901
[11] Walter Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409 – 419. · Zbl 0073.39602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.