×

Esistenza e regolarita delle ipersuperfici di curvatura media assegnata in \(R^n\). (Italian) Zbl 0305.49047


MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
28-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to measure and integration
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allard, W. K., On the first variation of a varifold. Ann. of Math. Vol. 95, (1972). · Zbl 0252.49028
[2] Bombieri, E., E. De Giorgi, & E. Giusti, Minimal cones and Bernstein problem. Inv. Math. (1969). · Zbl 0183.25901
[3] De Giorgi, E., Nuovi teoremi relativi alle misure (r- 1)-dimensionali in uno spazio ad r dimensioni. Ric. di Mat. Napoli (1955). · Zbl 0066.29903
[4] De Giorgi, E., Frontiere orientate di misura minima. Sem. Math. Sc. Nor. Sup. Pisa (1960–61). · Zbl 0296.49031
[5] Federer, H., Geometric Measure Theory. Springer-Verlag 1969. · Zbl 0176.00801
[6] Federer, H., The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension. Bull. A. M. S. (1970). · Zbl 0194.35803
[7] Miranda, M. Distribuzioni aventi derivate misura ed insiemi di perimetro localmente finito. Ann. Sc. Nor. Sup. Pisa (1964). · Zbl 0131.11802
[8] Miranda, M. Superfici cartesiane generalizzate ed insiemi di perimetro localemente finito sui prodotti cartesiani. Ann. Sc. Nor. Sup Pisa (1964). · Zbl 0152.24402
[9] Miranda, M., Sul minimo dell’integrale del gradiente di una funzione. Ann. Sc. Nor. Sup. Pisa (1965).
[10] Simons, J. Minimal varieties in Riemannian manifolds. Ann. of Math. (1968). · Zbl 0181.49702
[11] Triscari, D. Sulle singolarità delle frontiere orientate di misura minima. Ann. Sc. Nor. Sup. Pisa (1963). · Zbl 0138.03603
[12] Triscari, D. Sull’esistenza di cilindri con frontiera di misura minima. Ann. Sc. Nor. Sup. Pisa (1963). · Zbl 0124.05703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.