Aly, H. H.; Müller-Kirsten, H. J. W.; Vahedi-Faridi, N. Scattering by singular potentials with a perturbation-theoretical introduction to Mathieu functions. (English) Zbl 0307.33008 J. Math. Phys. 16, 961-970 (1975). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 Documents MSC: 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) 33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\) 33B10 Exponential and trigonometric functions PDFBibTeX XMLCite \textit{H. H. Aly} et al., J. Math. Phys. 16, 961--970 (1975; Zbl 0307.33008) Full Text: DOI Digital Library of Mathematical Functions: In §28.33(iii) Stability and Initial-Value Problems ‣ §28.33 Physical Applications ‣ Applications ‣ Chapter 28 Mathieu Functions and Hill’s Equation References: [1] DOI: 10.1103/PhysRev.139.B602 · doi:10.1103/PhysRev.139.B602 [2] DOI: 10.1103/PhysRev.178.2211 · doi:10.1103/PhysRev.178.2211 [3] DOI: 10.1103/PhysRev.178.2211 · doi:10.1103/PhysRev.178.2211 [4] DOI: 10.1063/1.1704809 · doi:10.1063/1.1704809 [5] DOI: 10.1063/1.1704809 · doi:10.1063/1.1704809 [6] DOI: 10.1063/1.1703963 · Zbl 0124.22703 · doi:10.1063/1.1703963 [7] DOI: 10.1063/1.1703963 · Zbl 0124.22703 · doi:10.1063/1.1703963 [8] DOI: 10.1063/1.1703963 · Zbl 0124.22703 · doi:10.1063/1.1703963 [9] DOI: 10.1063/1.1705201 · doi:10.1063/1.1705201 [10] DOI: 10.1063/1.1705201 · doi:10.1063/1.1705201 [11] DOI: 10.1007/BF02755695 · doi:10.1007/BF02755695 [12] DOI: 10.1007/BF02734830 · doi:10.1007/BF02734830 [13] DOI: 10.1016/0370-2693(69)90198-1 · doi:10.1016/0370-2693(69)90198-1 [14] DOI: 10.1016/0370-2693(69)90015-X · doi:10.1016/0370-2693(69)90015-X [15] Dingle R. B., J. Reine Angew. Math. 211 pp 11– (1962) [16] DOI: 10.1063/1.1664576 · Zbl 1229.81291 · doi:10.1063/1.1664576 [17] DOI: 10.1063/1.1665148 · doi:10.1063/1.1665148 [18] DOI: 10.1063/1.1724325 · Zbl 0115.05903 · doi:10.1063/1.1724325 [19] DOI: 10.1007/BF01386226 · Zbl 0095.05303 · doi:10.1007/BF01386226 [20] DOI: 10.1007/BF02771827 · Zbl 0106.20307 · doi:10.1007/BF02771827 [21] DOI: 10.1063/1.1703735 · Zbl 0099.22704 · doi:10.1063/1.1703735 [22] DOI: 10.1103/PhysRev.139.B602 · doi:10.1103/PhysRev.139.B602 [23] DOI: 10.1103/PhysRev.139.B602 · doi:10.1103/PhysRev.139.B602 [24] DOI: 10.1103/PhysRev.135.B693 · doi:10.1103/PhysRev.135.B693 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.