Zehnder, E. Generalized implicit function theorems with applications to some small divisor problems. I. (English) Zbl 0309.58006 Commun. Pure Appl. Math. 28, 91-140 (1975). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 ReviewsCited in 143 Documents MSC: 58C15 Implicit function theorems; global Newton methods on manifolds 53B20 Local Riemannian geometry 37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems 37C75 Stability theory for smooth dynamical systems 70F15 Celestial mechanics 70H20 Hamilton-Jacobi equations in mechanics × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Greene, Analytic isometric embeddings, Annals of Math. 93 pp 189– (1971) · Zbl 0194.22605 [2] Jacobowitz, Implicit function theorems and isometric embeddings, Annals of Math. pp 191– (1972) · Zbl 0214.12904 [3] Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, Jour. Differential Geometry 6 pp 561– (1972) · Zbl 0257.35001 [4] Moser, A rapidly convergent iteration method and nonlinear partial differential equations, I and II, Ann. Scuola Norm. Sup. Pisa 20 pp 265– (1966) [5] Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss., Göttingen, Math. Phys. Kl. II pp 20– (1962) · Zbl 0107.29301 [6] Moser, Convergent series expansions for quasiperiodic motions, Math. Ann. 169 pp 136– (1967) · Zbl 0179.41102 [7] Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sciences 47 (11) pp 1824– (1961) · Zbl 0104.30503 [8] Moser , J. On the construction of almost periodic solutions for ordinary differential equations 1969 60 67 [9] Moser, On a class of quasi-periodic solutions for Hamiltonian systems, IMPA, Dynamical Systems pp 281– (1973) [10] Moser, Stable and Random Motions in Dynamical Systems pp 281– (1973) [11] Kolmogorov , A. N. Théorie générale des systèmes dynamiques et mecanique classique 1957 [12] Arnol’d, Small divisors I, On mappings of a circle onto itself, Izvest. Akad. Nauk, Ser. Math. 25 (1) pp 21– (1961) [13] Trans. Amer. Math. Soc. Series 2 46 213 284 [14] Arnol’d, Proof of a theorem of A. N. Kolmogorov on the invariance of quasiperiodic motions under small perturbations of the Hamiltonian, Uspehi. Math. Nauk. 18 (5) pp 13– (1963) [15] Russian Math. Surveys 18 5 9 36 [16] Arnol’d, Small denominators and problems of stability of motions in classical and celestial mechanics, Uspehi. Math. Nauk 18 (6) pp 91– (1963) [17] Russian Math. Surveys 18 8 85 193 [18] Rüssmann, Kleine Nenner, I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss., Göttingen, Math. Phys. Kl. pp 67– (1970) [19] Rüssmann, Kleine Nenner, II: Bemerkungen zur Newton’schen Methode, Nachr. Akad. Wiss., Göttingen, Math. Phys. Kl. pp 1– (1972) [20] Schwartz, On Nash’s implicit function theorem, Comm. Pure Appl. Math. 13 pp 509– (1960) · Zbl 0178.51002 [21] Schwartz, Nonlinear Functional Analysis, Lecture Notes, 1964 pp 33– (1969) [22] Nash, The embedding problem for Riemann manifolds, Ann. of Math. 63 pp 20– (1956) [23] Sergeraert, Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications, Ann. Sci. École Norm. Sup., 4{\(\deg\)} Serie 5 pp 599– (1972) [24] Graff , S. M. On the continuation of hyperbolic invariant tori for Hamiltonian systems 1974 1 70 · Zbl 0257.34048 [25] Zehnder, An implicit function theorem for small divisor problems, Bull. Amer. Math. Soc. 80 (1) pp 174– (1974) · Zbl 0281.35002 [26] Zehnder , E. Generalized implicit function theorems with applications to some small divisor problems, II · Zbl 0334.58009 [27] Zehnder , E. Generalized implicit function theorems, III · Zbl 0334.58009 [28] Rüssmann , H. On linear partial differential equations on the n-torus 1974 [29] Rüssmann , H. Ein Theorem über implicite Funktionen 1973 [30] Hamilton, The inverse function theorem of Nash and Moser (1974) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.