Littler, R. A. Loss of variability at one locus in a finite population. (English) Zbl 0311.92009 Math. Biosci. 25, 151-163 (1975). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 18 Documents MSC: 92D10 Genetics and epigenetics 60J10 Markov chains (discrete-time Markov processes on discrete state spaces) PDF BibTeX XML Cite \textit{R. A. Littler}, Math. Biosci. 25, 151--163 (1975; Zbl 0311.92009) Full Text: DOI OpenURL References: [1] Dynkin, E.B., Markov processes, 2 volumes, (1965), Springer Berlin · Zbl 0132.37901 [2] Ewens, W.J., Concepts of substitutional load in finite populations, Theor. popul. biol., 3, 153-161, (1972) · Zbl 0237.92007 [3] Guess, H.A., On the weak convergence of wright-Fisher models, Stochastic proc. appl., 1, 287-306, (1973) · Zbl 0263.60033 [4] Karlin, S.A., First course in stochastic processes, (1966), Academic New York [5] Karlin, S.; McGregor, J., Direct product branching processes and related induced Markov chains. I: calculations of rates of approach to homozygosity, (), 111-145 [6] Karlin, S.; McGregor, J., Rates and probabilities of fixation for two locus random mating finite populations without selection, Genetics, 58, 141-159, (1968) [7] Khazanie, R.G.; McKean, H.E., A Mendelian Markov process with binomial transition probabilities, Biometrika, 53, 37-48, (1966) · Zbl 0141.36502 [8] Khazanie, R.G.; McKean, H.E., A Mendelian Markov process with multinomial transition probabilities, J. appl. probab., 3, 353-364, (1966) · Zbl 0163.14504 [9] Kimura, M., Random genetic drift in multi-allele locus, Evolution, 9, 419-435, (1955) [10] Kimura, M., Random genetic drift in a tri-allelic locus; exact solution with a continuous model, Biometrics, 12, 57-66, (1956) [11] Kimura, M.; Ohta, T., The average number of generations until fixation of a mutant gene in a finite population, Genetics, 61, 763-771, (1969) [12] Kimura, M.; Ohta, T., The average number of generations until extinction of an individual mutant gene in a finite population, Genetics, 63, 701-709, (1969) [13] Littler, R.A., Multidimensional stochastic models in genetics, (), unpublished · Zbl 0261.92006 [14] Littler, R.A.; Fackerell, E.D., Transition densities for neutral multi-allele diffusion models, Biometrics, 31, 117, (1975) · Zbl 0312.92005 [15] Malyutov, M.B.; Pasekov, V.P., On a statistical problem in population genetics, Theory probab. appl., 16, 564-566, (1971) [16] Trajstman, A.C.; Watterson, G.A., A note on a first passage probability found in population genetic models, Theor. popul. biol., 3, 396-403, (1972) · Zbl 0248.92001 [17] Trotter, H.F., Approximation of semi-groups of operators, Pac. J. math., 8, 887-919, (1958) · Zbl 0099.10302 [18] Watterson, G.A., Markov chains with absorbing states: a genetic example, Ann. math. stat., 32, 716-729, (1961) · Zbl 0108.30803 [19] Watterson, G.A., Some theoretical aspects of diffusion theory in population genetics, Ann. math. stat., 33, 939-957, (1962) · Zbl 0113.35502 [20] Watterson, G.A., The effect of linkage in a finite random-mating population, Theor. popul. biol., The effect of linkage in a finite random-mating population, 3, 117-87, (1970), errata · Zbl 0244.92003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.