×

On compressed ideals in topological semigroups. (English) Zbl 0316.22004


MSC:

22A15 Structure of topological semigroups
20M10 General structure theory for semigroups
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] V. Y. Andrunakievic, Ju. M. Rjabuhin: Rings with nilpotent elements and completely simple ideals. Soviet Math. Dokl. Vol. 9 (1968), No. 3 p. 565-568. · Zbl 0174.32803
[2] W. H. Cornish, P. N. Stewart: Rings with no nilpotent elements with the maximum condition on annihilators. · Zbl 0301.16016
[3] W. J. Faucett R. J. Koch, K. Numakura: Complements of maximal ideals in compact semigroups. Duke Math. Journal 22 (1955), pp. 655-661. · Zbl 0065.25303
[4] C. S. Hoo, K. P. Shum: On algebraic radicals in mobs. Colloquim Math. Vol. 25 (1972), p. 25-35. · Zbl 0236.22004
[5] K. Iseki: On ideals in semiring. Proc. Japan Acad. 34 (1958), No. 8, p. 507-509. · Zbl 0085.02101
[6] J. Kist: Minimal prime ideals in commutative semigroups. Proc. London Math. Soc. (3) 75 (1963), p. 31-50. · Zbl 0108.04004
[7] N. H. McCoy: The theory of rings. Macmillan Company, New York (1964). · Zbl 0121.03803
[8] K. Numakura: Prime ideals and idempotents in compact semigroups. Duke Math. Journal 24 (1957), p. 671-679. · Zbl 0218.22004
[9] A. B. Paalman, de Miranda: Topological semigroups. Mathematisch Centrum, Amsterdam 1964. · Zbl 0136.26904
[10] Š. Schwarz: On dual semigroups. Czech. Math. Journal 10 (1960), p. 201 - 230. · Zbl 0098.01602
[11] Š. Schwarz: Prime ideals and maximal ideals in semigroups. Czech. Math. Journal 19 (1969), p. 72-79. · Zbl 0176.29503
[12] K. P. Shum, C. S. Hoo: On compact N-semigroups. submitted to Czech. Math. Journal. · Zbl 0332.22003
[13] K. P. Shum: On the boundary of algebraic radical of ideals in topological semigroups. · Zbl 0276.22008
[14] G. Thierrin: Sur les idéaux complement premiers d’un anneau quelconque. Bull. Acad. Royale Belgique, 43 (1957) p. 124-132. · Zbl 0079.05002
[15] A. D. Wallace: Lecture notes on semigroups. Tulane University, 1956.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.